Intel’s Fryman: “It’s not that we love CMOS; it’s the only real choice.”

By John Russell

September 1, 2016

Forget for a moment the prevailing high anxiety over Moore’s law’s fate. In the near-term – which could easily mean a decade – CMOS will remain the only viable, volume technology driving computing. Pursue alternatives? Of course, urged Josh Fryman, principal engineer and engineering manager, Intel. But more can and must be done to advance CMOS-based architecture and Intel, not surprisingly, has a few ideas.

Fryman was one of three speakers scanning the horizon at ISC2016’s Scaling Beyond the End of Moore’s Law session. It was fascinating conversation covering quantum computing, neuromorphic computing, and today’s workhorse, CMOS.

Damian Steiger, a researcher at the Platform for Advanced Scientific Computing and the Institute for Theoretical Physics of ETH Zurich, tackled quantum computing. Figuring out how to actually implement quantum computing and identifying killer quantum applications to attract needed funding formed much of his talk. He had three applications in mind although wasn’t especially optimistic we’ll see useful quantum computers anytime soon with the possible exception of government-funded efforts aimed at decrypting RSA.

Karheinz Meier from the Human Brain Project tackled neuromorphic computing. Here, the near-term future seems brighter. Meier expects the recent availability of three large-scale neuromorphic computing systems for application development to push progress more quickly. (See HPCwire article, Think Fast – Is Neuromorphic Computing Set to Leap Forward?)

It fell to Fryman, the opening speaker, to remind everyone that as promising as many new directional efforts look, it takes years to work out the bugs and turn a new technology into a large-scale manufacturing-friendly process. Interestingly, according to Fryman, advancing CMOS will mostly involve reviving old ideas that were problematic in the past but are unavoidable now. It will also require thinking far more holistically about how hardware and software play together.

Josh Fryman, Intel
Josh Fryman, Intel

“We need to find the Neo of the next generation [computational technology],” agreed Fryman, referring to the protagonist in the film, The Matrix, whose abilities jumped over those around him, “but once you find it, once you work out the techniques, you still have a long haul to make it something we could use, something viable for mass production.

“Until then what are we going to do? The short answer is CMOS is going to continue. It’s not because it is necessarily the best technology, it’s not because we particularly like it and adore it, it’s because we have no choice to keep everything moving forward.”

In setting the context for his talk, Fryman emphasized it’s important to remember that Moore’s law is a business statement not a technology law. That said, Moore’s law has become a surrogate for many things, including the pace of semiconductor technology advance. Its current “difficulties” (Dennard scaling, et al.) have, of course, been widely discussed with Intel holding strong against the growing opinion that Moore’s law’s days are numbered. (See HPCwire article, Moore’s Law – Not Dead – and Intel’s Use of HPC to Keep it Alive)

Fryman noted the classic recipe for engineers to achieve Moore’s law for transistors has been “to scale your dimensions, to scale your supply, and you’re done. You just keep turning the crank on this over and over. The running joke is years ago in the fab we used just a handful of elements in the periodic table. Today we use just about all of the elements except for a handful to get the same job done. [But at the end of the day] it’s still just a recipe.”

From an engineering perspective, what happens when the recipe fails? Fryman briefly reminded the audience that change is hardly new in electronics but that a few common underlying characteristics have been necessary for progress.

“If you look at the evolution of electronics, moving from mechanical to electromechanical, to vacuums tubes, to bipolar, to NMOS, to PMOS, and ultimately CMOS, and now you have this questions about what is coming. If you look at the trend line historically, each of the crossings is defined by having three basic components. You have to have gain; signal to noise control; and scalability, although scalability is really an overused term. What does it really mean? You’re talking about three dimensions: performance, energy, and pricing. These are the three fundamentals for something to actually be a viable technology and it needs to be ‘friendly to high volume manufacturing.’”

Intel KNL Phi die shot
Intel KNL Phi die shot

As there is no obvious technology to replace CMOS now, the focus must be on how to use what we know. This is doable, maintains Fryman, but will require rethinking existing approaches and in some instances re-learning old lessons. He said a trio of strategies will drive advances in underlying CMOS and compute architectures.

  • Remove waste to reclaim efficiency. Die area, for example, has ballooned to accommodate accumulating features such as pipelines, onchip floating point, out-of-order execution, etc. In many cases performance, and in most cases power consumption, have suffered. Review of accumulated features with an eye towards simplification and elimination will play a role.
  • Use known techniques. Over the years, lots of manufacturing and chip design approaches have been tried and tested and well characterized, including their drawbacks, “but people wanted to avoid them because they were considered hard at some level, too hard to program, to hard to use, too hard to design. But when you are running out of other knobs [to adjust] these are not as hard anymore.”
  • Multidisciplinary solutions. Tackling physical manufacturing problems will only work so far; offloading or streamlining performance and tracking Moore’s law will require blended software, hardware, and manufacturing processes.

Far from pessimistic Fryman believes making further progress using these techniques is do-able, if challenging, and offered a few directional examples including one on handling resiliency at small feature size.

“Everybody is worried that once you get down to 7 nm you are going to have higher variability and failures and what am I going to do about it. There are two ways to look at it. There are reactive measures, so if something fails, an ECC failure, a soft upset, what am I going to do about it? I’ll have to react, I’ll have to kill, I’ll have to restart,” said Fryman.

“There’s also the proactive side which is I am going to plan ahead for this future and I am going to design my system in software and the hardware level to periodically check itself, to check if I am leading to a failure situation should I bring down my voltage, should I migrate work away from something.

“From a user experience. I have a classic software layer. I’ve got run time sitting on top of hardware, how does that interact with the entire stack. I’ve got user codes. I’ve got runtimes. I’ve got programming support tools. All these things need to be aware of the underlying assumptions in the system,” he said.

Power management is another area likely to involve tighter links between software and hardware. He cited work from a Polaris test chip in the 2006-2007 timeframe. “I can look at fine grained power management techniques. This is another known technique that’s way beyond clock handling. There are 21 dynamic sleeper readings in the actual tile, a whole bunch of tiles on the die, and you let the system turn the tiles on and off in the sleep state, which give a significant energy savings.”

Fryman again emphasized this is known technique but it’s hard do because it extends beyond hardware and has software implications: how do you structure your code, how do you know when you can take advantage of something like this, etc.

“We are going to have to start thinking outside the box and [in many instances] go back to existing techniques and say so, do we really need cache coherency across an entire machine. Maybe not. Do we really need cache coherency across 1000 cores on a die or 100 cores on a die, probably not. Are we willing to take the complexity from software for a simpler more efficient, more scalable hardware? Really what I am saying moving forward is we need to take your heads out of the sand, pardon the pun, and rethink what we have been doing,” he said.

Fryman says the industry is moving into another era that he calls “the disaggregation of the datacenter.” In a fully connected model, he said, there is “no system you can design that can get the bandwidth.” More and more compute will push out to the edges and “it will look different and this is where machine learning an other algorithms come in and neuromorphic might be a big deal. I see the industry not as stagnant but going through this shift to the edge, which is a very different design point than the classic PC or tablet.”

The Intel engineer was careful not to reveal too much, “Eventually turning the knob on transistors, as we have been doing, will not work. When that is is highly debatable, which is why I chuckle. I’m not supposed to talk about post 7 nm but I can simply say it’s actively being looked into.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantum Rolls – DOE Dishes $218M; NSF Awards $31M; US Releases ‘Strategic Overview’

September 24, 2018

It was quite a day for U.S. quantum computing. In conjunction with the White House Summit on Advancing American Leadership in Quantum Information Science (QIS) held today, the Department of Energy announced $218 million Read more…

By John Russell

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

Quantum Rolls – DOE Dishes $218M; NSF Awards $31M; US Releases ‘Strategic Overview’

September 24, 2018

It was quite a day for U.S. quantum computing. In conjunction with the White House Summit on Advancing American Leadership in Quantum Information Science (QIS) Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This