Intel’s Fryman: “It’s not that we love CMOS; it’s the only real choice.”

By John Russell

September 1, 2016

Forget for a moment the prevailing high anxiety over Moore’s law’s fate. In the near-term – which could easily mean a decade – CMOS will remain the only viable, volume technology driving computing. Pursue alternatives? Of course, urged Josh Fryman, principal engineer and engineering manager, Intel. But more can and must be done to advance CMOS-based architecture and Intel, not surprisingly, has a few ideas.

Fryman was one of three speakers scanning the horizon at ISC2016’s Scaling Beyond the End of Moore’s Law session. It was fascinating conversation covering quantum computing, neuromorphic computing, and today’s workhorse, CMOS.

Damian Steiger, a researcher at the Platform for Advanced Scientific Computing and the Institute for Theoretical Physics of ETH Zurich, tackled quantum computing. Figuring out how to actually implement quantum computing and identifying killer quantum applications to attract needed funding formed much of his talk. He had three applications in mind although wasn’t especially optimistic we’ll see useful quantum computers anytime soon with the possible exception of government-funded efforts aimed at decrypting RSA.

Karheinz Meier from the Human Brain Project tackled neuromorphic computing. Here, the near-term future seems brighter. Meier expects the recent availability of three large-scale neuromorphic computing systems for application development to push progress more quickly. (See HPCwire article, Think Fast – Is Neuromorphic Computing Set to Leap Forward?)

It fell to Fryman, the opening speaker, to remind everyone that as promising as many new directional efforts look, it takes years to work out the bugs and turn a new technology into a large-scale manufacturing-friendly process. Interestingly, according to Fryman, advancing CMOS will mostly involve reviving old ideas that were problematic in the past but are unavoidable now. It will also require thinking far more holistically about how hardware and software play together.

Josh Fryman, Intel
Josh Fryman, Intel

“We need to find the Neo of the next generation [computational technology],” agreed Fryman, referring to the protagonist in the film, The Matrix, whose abilities jumped over those around him, “but once you find it, once you work out the techniques, you still have a long haul to make it something we could use, something viable for mass production.

“Until then what are we going to do? The short answer is CMOS is going to continue. It’s not because it is necessarily the best technology, it’s not because we particularly like it and adore it, it’s because we have no choice to keep everything moving forward.”

In setting the context for his talk, Fryman emphasized it’s important to remember that Moore’s law is a business statement not a technology law. That said, Moore’s law has become a surrogate for many things, including the pace of semiconductor technology advance. Its current “difficulties” (Dennard scaling, et al.) have, of course, been widely discussed with Intel holding strong against the growing opinion that Moore’s law’s days are numbered. (See HPCwire article, Moore’s Law – Not Dead – and Intel’s Use of HPC to Keep it Alive)

Fryman noted the classic recipe for engineers to achieve Moore’s law for transistors has been “to scale your dimensions, to scale your supply, and you’re done. You just keep turning the crank on this over and over. The running joke is years ago in the fab we used just a handful of elements in the periodic table. Today we use just about all of the elements except for a handful to get the same job done. [But at the end of the day] it’s still just a recipe.”

From an engineering perspective, what happens when the recipe fails? Fryman briefly reminded the audience that change is hardly new in electronics but that a few common underlying characteristics have been necessary for progress.

“If you look at the evolution of electronics, moving from mechanical to electromechanical, to vacuums tubes, to bipolar, to NMOS, to PMOS, and ultimately CMOS, and now you have this questions about what is coming. If you look at the trend line historically, each of the crossings is defined by having three basic components. You have to have gain; signal to noise control; and scalability, although scalability is really an overused term. What does it really mean? You’re talking about three dimensions: performance, energy, and pricing. These are the three fundamentals for something to actually be a viable technology and it needs to be ‘friendly to high volume manufacturing.’”

Intel KNL Phi die shot
Intel KNL Phi die shot

As there is no obvious technology to replace CMOS now, the focus must be on how to use what we know. This is doable, maintains Fryman, but will require rethinking existing approaches and in some instances re-learning old lessons. He said a trio of strategies will drive advances in underlying CMOS and compute architectures.

  • Remove waste to reclaim efficiency. Die area, for example, has ballooned to accommodate accumulating features such as pipelines, onchip floating point, out-of-order execution, etc. In many cases performance, and in most cases power consumption, have suffered. Review of accumulated features with an eye towards simplification and elimination will play a role.
  • Use known techniques. Over the years, lots of manufacturing and chip design approaches have been tried and tested and well characterized, including their drawbacks, “but people wanted to avoid them because they were considered hard at some level, too hard to program, to hard to use, too hard to design. But when you are running out of other knobs [to adjust] these are not as hard anymore.”
  • Multidisciplinary solutions. Tackling physical manufacturing problems will only work so far; offloading or streamlining performance and tracking Moore’s law will require blended software, hardware, and manufacturing processes.

Far from pessimistic Fryman believes making further progress using these techniques is do-able, if challenging, and offered a few directional examples including one on handling resiliency at small feature size.

“Everybody is worried that once you get down to 7 nm you are going to have higher variability and failures and what am I going to do about it. There are two ways to look at it. There are reactive measures, so if something fails, an ECC failure, a soft upset, what am I going to do about it? I’ll have to react, I’ll have to kill, I’ll have to restart,” said Fryman.

“There’s also the proactive side which is I am going to plan ahead for this future and I am going to design my system in software and the hardware level to periodically check itself, to check if I am leading to a failure situation should I bring down my voltage, should I migrate work away from something.

“From a user experience. I have a classic software layer. I’ve got run time sitting on top of hardware, how does that interact with the entire stack. I’ve got user codes. I’ve got runtimes. I’ve got programming support tools. All these things need to be aware of the underlying assumptions in the system,” he said.

Power management is another area likely to involve tighter links between software and hardware. He cited work from a Polaris test chip in the 2006-2007 timeframe. “I can look at fine grained power management techniques. This is another known technique that’s way beyond clock handling. There are 21 dynamic sleeper readings in the actual tile, a whole bunch of tiles on the die, and you let the system turn the tiles on and off in the sleep state, which give a significant energy savings.”

Fryman again emphasized this is known technique but it’s hard do because it extends beyond hardware and has software implications: how do you structure your code, how do you know when you can take advantage of something like this, etc.

“We are going to have to start thinking outside the box and [in many instances] go back to existing techniques and say so, do we really need cache coherency across an entire machine. Maybe not. Do we really need cache coherency across 1000 cores on a die or 100 cores on a die, probably not. Are we willing to take the complexity from software for a simpler more efficient, more scalable hardware? Really what I am saying moving forward is we need to take your heads out of the sand, pardon the pun, and rethink what we have been doing,” he said.

Fryman says the industry is moving into another era that he calls “the disaggregation of the datacenter.” In a fully connected model, he said, there is “no system you can design that can get the bandwidth.” More and more compute will push out to the edges and “it will look different and this is where machine learning an other algorithms come in and neuromorphic might be a big deal. I see the industry not as stagnant but going through this shift to the edge, which is a very different design point than the classic PC or tablet.”

The Intel engineer was careful not to reveal too much, “Eventually turning the knob on transistors, as we have been doing, will not work. When that is is highly debatable, which is why I chuckle. I’m not supposed to talk about post 7 nm but I can simply say it’s actively being looked into.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing ( Read more…

By John Russell

Ethernet Technology Consortium Launches 800 Gigabit Ethernet Specification

April 7, 2020

The newly rebranded Ethernet Technology Consortium (ETC), formerly known as the 25 Gigabit Ethernet Consortium, announced a new 800 Gigabit Ethernet specification and an expanded scope aimed at meeting the needs of perfo Read more…

By Tiffany Trader

Spanish Researchers Introduce HPC-Ready COVID-19 Spread Simulator

April 7, 2020

With governments in a mad scramble to identify the policies most likely to curb the spread of the pandemic without unnecessarily crippling the global economy, researchers are turning to AI and high-performance computing Read more…

By Oliver Peckham

Stony Brook Researchers to Run COVID-19 Simulations on Supercomputers

April 6, 2020

A wide range of supercomputers are crunching the infamous “spike” protein of the novel coronavirus, from Summit more than a month ago to [email protected] to a Russian cluster just a week ago. Read more…

By Staff report

What’s New in Computing vs. COVID-19: Fast-Tracked Research, Susceptibility Study, Antibodies & More

April 6, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

Army Seeks AI Ground Truth

April 3, 2020

Deep neural networks are being mustered by U.S. military researchers to marshal new technology forces on the Internet of Battlefield Things. U.S. Army and industry researchers said this week they have developed a “c Read more…

By George Leopold

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems Read more…

By John Russell

Ethernet Technology Consortium Launches 800 Gigabit Ethernet Specification

April 7, 2020

The newly rebranded Ethernet Technology Consortium (ETC), formerly known as the 25 Gigabit Ethernet Consortium, announced a new 800 Gigabit Ethernet specificati Read more…

By Tiffany Trader

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. Th Read more…

By John Russell

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatme Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

CINECA’s Carlo Cavazzoni Describes the Supercomputing Battle Against COVID-19

March 17, 2020

The latest episode of the This Week in HPC podcast features Carlo Cavazzoni, a senior staff member at CINECA, one of the leading supercomputing organizations in Europe. Intersect360 Research's Addison Snell spoke to Cavazzoni to discuss both CINECA's work using supercomputing to combat COVID-19 and Cavazzoni's personal experience living near the epicenter... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This