New Approach to Computationally Designing Drugs for GPCRs

By John Russell

September 8, 2016

Modeling protein interactions with drugs has long been computationally challenging. One obstacle is these interactions often take relatively long to occur and conventional molecular dynamics simulation is insufficient. This week a group of researchers, using several XSEDE supercomputers, report a hybrid in silico-experimental approach that shows promise as a drug design tool for use with G protein-coupled receptors (GPCRs), a class that includes the targets of about 40 percent of currently marketed drugs.

Their report is published in the Proceedings of the National Academy of Sciences (PNAS) early edition (Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor (GPCR)), and is focused on a GPCR associated with heart disease.

Using a unique computational approach to rapidly sample, in millisecond time intervals, proteins in their natural state of gyrating, bobbing, and weaving, the research team from UC San Diego and Monash University in Australia identified promising drug leads that may selectively combat heart disease, from arrhythmias to cardiac failure. An account of the work is posted on the San Diego Supercomputing Center web site.

The researchers used supercomputers Gordon and Comet, based at the San Diego Supercomputer Center (SDSC) at UC San Diego; and Stampede, at the Texas Advanced Computing Center at the University of Texas at Austin, to perform a survey of protein structures using accelerated molecular dynamics or aMD – a method that performs a more complete sampling of the myriad shapes and conformations that a target protein molecule may go through.

“Based on the hypothesis that incorporation of receptor flexibility is key to effective GPCR drug design, we used aMD (accelerated molecular dynamics) simulations to construct structural ensembles for molecular docking in the extracellular vestibule of the receptor. Ensemble docking of chemical compounds obtained from the National Cancer Institute (NCI) compound library was performed to identify new potential allosteric modulators. The computationally selected lead compounds were then tested experimentally to investigate their binding and functional properties. We report here a successful structure-based design approach,” write the researchers.

Shown below is an illustration of the workflow:

GPCR Research Workflow

Like most molecular dynamic modeling, aMD examines energy levels to determine the changing conformation of molecules, but shortcuts the process by restricting energy min/max levels explored. Use of supercomputers allowed “us to run hundreds-of-nanosecond aMD simulations, which are able to capture millisecond timescale events in complex biomolecules,” said the study’s first author Yinglong Miao, a research specialist with the Howard Hughes Medical Institute at UC San Diego and research scientist with the UC San Diego Department of Pharmacology.

Modern drug discovery targeting GPCRs, note the researchers, is characterized by an alarmingly high attrition rate. To a large degree this stems from the inability of most ligands to selectively target one receptor. “Many receptor subtypes of GPCR families often exhibit a highly conserved orthosteric binding pocket, such that a single ligand can interact with several receptors simultaneously, leading to the activation/inactivation of multiple receptors, sometimes with opposing of their signaling profiles, contributing to off-target side effects.”

Here’s a rough snapshot of the study workflow: aMD simulations were carried out to construct structural ensembles to account for receptor flexibility. Meanwhile, a compound library was prepared from the NCI Diversity Set (~1,600 compounds) by using LigPrep in the Schrödinger package. Docking known ligands against the receptor X-ray structures and aMD structural ensembles was carried out by using Glide virtual screening workflow (VSW, Schrödinger). Glide induced fit docking (IFD) calculations are very computationally expensive (`200 CPU hours for every 100 compounds per receptor structure).

Overall, retrospective docking of the antagonists and agonists using aMD structural ensembles provided significantly higher enrichment factors than using the X-ray structures alone, report the authors.

The next steps, say the researchers, will involve an investigation of the chemical properties of these novel molecules by the molecular chemists from Monash. More broadly, “This is just the beginning. We believe that it will be possible to apply our combined cutting-edge in silico and in vitro techniques to a wide array of receptor targets that are involved in some of the most devastating diseases,” said Celine Valant, the study’s co-lead investigator from Monash.

In addition to XSEDE, supercomputing time was also provided by the Hopper and Edison supercomputers through the National Energy Research Scientific Computing Center (NERSC).

Link to paper on PNAS:

Link to article on SDSC:

Link to article on TACC:

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

Training Time Slashed for Deep Learning

August 14, 2018, an organization offering free courses on deep learning, claimed a new speed record for training a popular image database using Nvidia GPUs running on public cloud infrastructure. A pair of researchers trained Read more…

By George Leopold

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the Read more…

By Rob Farber

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

Rigetti Eyes Scaling with 128-Qubit Architecture

August 10, 2018

Rigetti Computing plans to build a 128-qubit quantum computer based on an equivalent quantum processor that leverages emerging hybrid computing algorithms used to test programs and potential applications. Founded in 2 Read more…

By George Leopold

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Google is First Partner in NIH’s STRIDES Effort to Speed Discovery in the Cloud

July 31, 2018

The National Institutes of Health, with the help of Google, last week launched STRIDES - Science and Technology Research Infrastructure for Discovery, Experimen Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This