Nvidia Launches Pascal GPUs for Deep Learning Inferencing

By Tiffany Trader

September 12, 2016

Already entrenched in the deep learning community for neural net training, Nvidia wants to secure its place as the go-to chipmaker for datacenter inferencing. At the GPU Technology Conference (GTC) in Beijing today (Tuesday), Nvidia CEO Jen-Hsun Huang unveiled the latest additions to the Tesla line, Pascal-based P4 and P40 GPU accelerators, as well as new software all aimed at improving performance for inferencing workloads that undergird applications like voice-activated assistants, spam filters, and recommendation engines.

Employing the same form factor as the Maxwell-based M4 and M40 GPUs, the new Pascal cards were designed to accelerate inferencing workloads. Most significantly, the GPUs feature specialized inference instructions based on 8-bit (INT8) operations. Using the VGG image recognition model as a benchmark, Nvidia reports that the P40 achieved a 45x faster response than a E5-2690v4 Xeon (with the latest Intel Math Kernel Library) and a 4x improvement over the M40, which debuted last November at Supercomputing. In both cases, the P40 was running INT8 instructions, while the comparison hardware was employing FP32.

For the test, Nvidia paired the Tesla P40 with an internal version of the company’s TensorRT library, which is also being announced today. TensorRT, formerly known as GIE (GPU Inference Engine), enables the trained neural net to run well on Pascal GPUs, says Nvidia. The library takes neural nets, typically built with 32-bit or 16-bit operations, and tunes them for the specific GPU to be used for deployment.

“If there’s a GPU in the datacenter like the P4 or P40 then TensorRT will automatically recognize that and transform that neural net into 8 bit,” said Roy Kim, a product manager in Nvidia’s Tesla HPC business unit. “And TensorRT will take neural net and deploy it anywhere – it could deploy it in an embedded Jetson program for example.”

On the training side, models need the higher accuracy of at least 16-bit floating point (FP16), but once the models are trained, this dynamic range can be reduced down to an 8-bit range without a loss of accuracy. The upshot of INT8, is that it enables four times as much throughput compared to single-precision floating point (FP32).

nvidia-tesla-p4-specs

nvidia-tesla-p40-specs

The P4 is designed for the scale-out datacenter server and prioritizes energy efficiency whereas the P40 emphasizes high throughput for deep learning workloads. The P40 is for customers who want to deploy lots of GPUs in a box in batch mode for overnight processing of video data, for example, said Kim. A single Tesla P4 provides 22 Tera-Operations per second (TOPS) while the P40 offers 47 Tera-Operations per second (TOPS) — both figures are with boost clock enabled.

Nvidia also unveiled a new software development kit to help speed video analytics workloads. DeepStream SDK has APIs for transcoding video onto various formats, it has SDK to preprocess those videos, and it has the APIs and support for deep learning frameworks, the company said. With DeepStream, a single Tesla P4 server (with two E5-2650 v4 CPUs) can simultaneously decode and analyze up to 93 HD video streams in real time compared with seven streams on a GPU-less Broadwell-based box, according to Nvidia.

Nvidia continues to count Baidu as a key partner and confirmed that the Chinese search giant still uses Nvidia GPUs for training and inferencing its Deep Speech 2 system. Hyperscalers like Baidu are increasingly concerned with minimizing the time it takes for their systems to recognize speech, images or text in response to queries from users and devices.

“Delivering simple and responsive experiences to each of our users is very important to us,” said Greg Diamos, senior researcher at Baidu. “At Baidu, we have deployed NVIDIA GPUs in production to provide AI-powered services such as our Deep Speech 2 system and the use of GPUs enables a level of responsiveness that would not be possible on un-accelerated servers.”

“The complexity of that Deep Speech 2 model has increased by 10x in just one year,” said Nvidia’s Kim. “So it makes sense from the training side why they need GPUs. But on the inferencing side, they are seeing a problem. Whereas it used to be okay to deploy on CPU servers, it isn’t tenable anymore. With hyperscalers every millisecond matters. Baidu believes that after 500 milliseconds, user engagement goes down. With the Pascal GPU the response is almost immediate, about 100 milliseconds.”

Nvidia said it went through pains to ensure it used the latest Intel hardware and software for its comparison testing. The graphics chipmaker’s message is that even the latest Broadwell CPUs are challenged by today’s complex inferencing workloads. To Intel’s mind, however, the star of its deep learning portfolio is its Xeon Phi manycore processor. We imagine a fuller picture of the comparative performance advantages of Nvidia and Intel silicon will emerge when Pascal GPUs go head to head against Knights Landing on a range of workloads. Things will get even more interesting next year with the debut of the next-generation Phi processor, Knights Mill, which will support lower-precision computations.

The Tesla P40 is expected to be available next month and the P4 the month after. The cards will be available from all major OEMs and ODMs, including Dell Technologies, HPE, Inspur, Inventec, Lenovo, QCT, Quanta Computer and Wistron.

The DeepStream SDK will be available to early users as part of an invite-only closed beta program.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them better through the miracle of video..... Team FAU/TUC is a c Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from SC17 chair Bernd Mohr, where he lauded the competition for Read more…

By Dan Olds

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them bet Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This