Deep Learning Paves Way for Better Diagnostics

By Tiffany Trader

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations.

Final-year Stanford PhD students Apaar Sadhwani and Jason Su got involved in developing the diagnostic solution as part of a class project and corresponding Kaggle competition that was held last year. Sponsor Amazon provided AWS cloud credits in support of the research.

diabetic-retinopathy_5-classes_sadhwani-su_400x
Source: Automatic Grading of Eye Diseases Through Deep Learning, 2016

After Kaggle, the duo decided to turn their research project into a cloud-based platform that hospitals and clinics can use to guide the diagnosis of eye diseases. Their approach relies on a convolutional neural net (CNN) that grades the severity of diabetic retinopathy disease states into five categories: 0-4, with 0 being normal and 4 being the most severe.

The researchers have been training their model with a data set of 80,000 images from EYEPACS, a web-based application for exchanging eye-related clinical information, run by the California Health Foundation. “Getting data is the most constraining part of applying deep learning to a medical setting,” said Sadhwani, “but we are working closely with partners to get more data.”

They’ve also had to address a class imbalance in the data set. “We have a lot more 0’s and 1’s than 3’s and 4’s, for example,” said Sadhwani. As the disease progresses to stage four (known as proliferative diabetic retinopathy, or PDR), image data is more rare. A total of about 10,000 stage four images are required for optimal results.

The training problem is run on AWS Elastic Compute Cloud (EC2) with single-GPU and multi-GPU nodes. Some S3 storage and Elastic Block Store (EBS) services are also employed. The training takes about three days to a week for a given model.

Within EC2, the researchers are using Starcluster which lets them build custom clusters among the nodes and network them together. They used a master node to store all their training data and up to 28 different training nodes. All these separate training nodes would access the master node so they wouldn’t have to mirror the data onto each of the nodes.

“With Starcluster and AWS you can bring up different node types independently on demand,” said Su. “So we would run this experiment that would only need a single-GPU node and then after that finished we could shut down that node and save money. Then we would scale it up to a larger resolution image and we would need four-GPU nodes for that – so we’d spin that up, train on that, and come back three days later and shut that off. AWS provides this flexibility for scaling up and scaling down for cost and for trying out different ideas.”

The researchers relied on AWS spot instance pricing to further improve the economics. Their program saves a state every “epoch,” which relates to one pass through the data set, so losing a node did not incur a big setback. With 55 epochs in a run, the most they would lose is 1/55th of their training progress.

They used the g2.2xlarge instance type and the g2.8xlarge instance type for training their final models. They trained two kinds of models, one on low-res images and the final model on high-res images, for which they employed the larger multi-GPU nodes.

Amazon’s GPU instances are based on older Nvidia GRID K520 graphics cards, which at 4 GB per GPU do not have an ideal memory profile for training based on very high-resolution images.

“Typically in deep learning, you have a 256×256 image, or about one-sixteenth of a megapixel and we’re at four megapixels, so memory is a huge part of doing this problem,” said Sadhwani. “Our workaround was to scale to 4-GPU nodes, which effectively had 4 gigabytes of memory each [GPU], but we lose some to overhead because we have to have the model independently at each of the separate GPUs. It would be more advantageous to have a single GPU with a full 16 gigabytes.”

Because their model was dealing with these high-resolution images, they used Torch to split it across the 4-GPU node to fine-tune its parameters. Currently, they are moving to a distributed training model, which enables several different nodes to train essentially the same model but with independent data. This gives them the ability to train one model across many GPUs, rather than a single model on a single GPU node and thus accelerates the training.

The researchers are eyeing clouds with higher-memory GPUs, which could mean holding out for upgraded Amazon instances or moving to the Microsoft Azure cloud with its Tesla K80s.

They are not interested in CPUs. “It would take significantly longer, at least a factor of 50,” said Sadhwani. “The kind of neural networks we are using [convolutional neural nets] harness parallelization a lot. Even if we were not using this special class of network, there is at least a 10x speedup going from CPUs to GPUs, but for this particular variety that speedup is magnified a lot more, in the neighborhood of 100x.”

Diabetic retinopathy is a disease of the blood vessels in the eye. As the sugar level in the blood rises, it causes the walls of the blood vessels to thin and eventually they’ll crack and bleed. The most important thing to look for is tiny dot bleeds, called hemorrhages. They are very small and difficult to locate even with advanced algorithms. The deep learning model must also be trained to ignore or flag likely camera artifacts, which appear in approximately 40 percent of the images, and can obscure identification of disease traits.

To address these challenges, the Stanford team’s approach uses two networks, a lesion detector and a main network. The lesion detector looks at a small part of the image and outputs a number between 0 and 1, a probability. The lesion detector has so far achieved an accuracy of 99 percent for negatives and 76 percent for positives. The purpose of the main network is to characterize details about where the disease-related features are with respect to the important parts of the eye.

deep-learning-fused-architecture_sadhwani-su_800x
Source: Automatic Grading of Eye Diseases Through Deep Learning, 2016

The outputs of these two pipelines are then fused together. This provides a way to combine low-level details about where there are dot hemorrhages with high-level information like which parts of the image should actually be ignored because they are corrupted by artifacts. The fuse network is responsible for integrating all these signals together to deliver a final probability for the disease class.

Right now the team has been working with five classes, but they say that in the clinical setting, these grades are not tracked with such granularity. In terms of intervention, there are really three stages: 0) no action is required; 1) monitor the progress of the disease; and 2) medical intervention such as surgery is required.

“Moving to three-classes would increase the accuracy of our models because it’s a simpler problem and easier to solve,” said Su.

The ultimate goal here is to deliver a digital assistant to radiologists, opthamologists and other clinicians, so they can screen more patients, more frequently.

“Using an automated tool to augment human resources, you can more closely monitor the changes in the disease state as they progress to more effectively treat the disease,” said Su.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This