Deep Learning Paves Way for Better Diagnostics

By Tiffany Trader

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations.

Final-year Stanford PhD students Apaar Sadhwani and Jason Su got involved in developing the diagnostic solution as part of a class project and corresponding Kaggle competition that was held last year. Sponsor Amazon provided AWS cloud credits in support of the research.

diabetic-retinopathy_5-classes_sadhwani-su_400x
Source: Automatic Grading of Eye Diseases Through Deep Learning, 2016

After Kaggle, the duo decided to turn their research project into a cloud-based platform that hospitals and clinics can use to guide the diagnosis of eye diseases. Their approach relies on a convolutional neural net (CNN) that grades the severity of diabetic retinopathy disease states into five categories: 0-4, with 0 being normal and 4 being the most severe.

The researchers have been training their model with a data set of 80,000 images from EYEPACS, a web-based application for exchanging eye-related clinical information, run by the California Health Foundation. “Getting data is the most constraining part of applying deep learning to a medical setting,” said Sadhwani, “but we are working closely with partners to get more data.”

They’ve also had to address a class imbalance in the data set. “We have a lot more 0’s and 1’s than 3’s and 4’s, for example,” said Sadhwani. As the disease progresses to stage four (known as proliferative diabetic retinopathy, or PDR), image data is more rare. A total of about 10,000 stage four images are required for optimal results.

The training problem is run on AWS Elastic Compute Cloud (EC2) with single-GPU and multi-GPU nodes. Some S3 storage and Elastic Block Store (EBS) services are also employed. The training takes about three days to a week for a given model.

Within EC2, the researchers are using Starcluster which lets them build custom clusters among the nodes and network them together. They used a master node to store all their training data and up to 28 different training nodes. All these separate training nodes would access the master node so they wouldn’t have to mirror the data onto each of the nodes.

“With Starcluster and AWS you can bring up different node types independently on demand,” said Su. “So we would run this experiment that would only need a single-GPU node and then after that finished we could shut down that node and save money. Then we would scale it up to a larger resolution image and we would need four-GPU nodes for that – so we’d spin that up, train on that, and come back three days later and shut that off. AWS provides this flexibility for scaling up and scaling down for cost and for trying out different ideas.”

The researchers relied on AWS spot instance pricing to further improve the economics. Their program saves a state every “epoch,” which relates to one pass through the data set, so losing a node did not incur a big setback. With 55 epochs in a run, the most they would lose is 1/55th of their training progress.

They used the g2.2xlarge instance type and the g2.8xlarge instance type for training their final models. They trained two kinds of models, one on low-res images and the final model on high-res images, for which they employed the larger multi-GPU nodes.

Amazon’s GPU instances are based on older Nvidia GRID K520 graphics cards, which at 4 GB per GPU do not have an ideal memory profile for training based on very high-resolution images.

“Typically in deep learning, you have a 256×256 image, or about one-sixteenth of a megapixel and we’re at four megapixels, so memory is a huge part of doing this problem,” said Sadhwani. “Our workaround was to scale to 4-GPU nodes, which effectively had 4 gigabytes of memory each [GPU], but we lose some to overhead because we have to have the model independently at each of the separate GPUs. It would be more advantageous to have a single GPU with a full 16 gigabytes.”

Because their model was dealing with these high-resolution images, they used Torch to split it across the 4-GPU node to fine-tune its parameters. Currently, they are moving to a distributed training model, which enables several different nodes to train essentially the same model but with independent data. This gives them the ability to train one model across many GPUs, rather than a single model on a single GPU node and thus accelerates the training.

The researchers are eyeing clouds with higher-memory GPUs, which could mean holding out for upgraded Amazon instances or moving to the Microsoft Azure cloud with its Tesla K80s.

They are not interested in CPUs. “It would take significantly longer, at least a factor of 50,” said Sadhwani. “The kind of neural networks we are using [convolutional neural nets] harness parallelization a lot. Even if we were not using this special class of network, there is at least a 10x speedup going from CPUs to GPUs, but for this particular variety that speedup is magnified a lot more, in the neighborhood of 100x.”

Diabetic retinopathy is a disease of the blood vessels in the eye. As the sugar level in the blood rises, it causes the walls of the blood vessels to thin and eventually they’ll crack and bleed. The most important thing to look for is tiny dot bleeds, called hemorrhages. They are very small and difficult to locate even with advanced algorithms. The deep learning model must also be trained to ignore or flag likely camera artifacts, which appear in approximately 40 percent of the images, and can obscure identification of disease traits.

To address these challenges, the Stanford team’s approach uses two networks, a lesion detector and a main network. The lesion detector looks at a small part of the image and outputs a number between 0 and 1, a probability. The lesion detector has so far achieved an accuracy of 99 percent for negatives and 76 percent for positives. The purpose of the main network is to characterize details about where the disease-related features are with respect to the important parts of the eye.

deep-learning-fused-architecture_sadhwani-su_800x
Source: Automatic Grading of Eye Diseases Through Deep Learning, 2016

The outputs of these two pipelines are then fused together. This provides a way to combine low-level details about where there are dot hemorrhages with high-level information like which parts of the image should actually be ignored because they are corrupted by artifacts. The fuse network is responsible for integrating all these signals together to deliver a final probability for the disease class.

Right now the team has been working with five classes, but they say that in the clinical setting, these grades are not tracked with such granularity. In terms of intervention, there are really three stages: 0) no action is required; 1) monitor the progress of the disease; and 2) medical intervention such as surgery is required.

“Moving to three-classes would increase the accuracy of our models because it’s a simpler problem and easier to solve,” said Su.

The ultimate goal here is to deliver a digital assistant to radiologists, opthamologists and other clinicians, so they can screen more patients, more frequently.

“Using an automated tool to augment human resources, you can more closely monitor the changes in the disease state as they progress to more effectively treat the disease,” said Su.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This