Deep Learning Paves Way for Better Diagnostics

By Tiffany Trader

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations.

Final-year Stanford PhD students Apaar Sadhwani and Jason Su got involved in developing the diagnostic solution as part of a class project and corresponding Kaggle competition that was held last year. Sponsor Amazon provided AWS cloud credits in support of the research.

Source: Automatic Grading of Eye Diseases Through Deep Learning, 2016

After Kaggle, the duo decided to turn their research project into a cloud-based platform that hospitals and clinics can use to guide the diagnosis of eye diseases. Their approach relies on a convolutional neural net (CNN) that grades the severity of diabetic retinopathy disease states into five categories: 0-4, with 0 being normal and 4 being the most severe.

The researchers have been training their model with a data set of 80,000 images from EYEPACS, a web-based application for exchanging eye-related clinical information, run by the California Health Foundation. “Getting data is the most constraining part of applying deep learning to a medical setting,” said Sadhwani, “but we are working closely with partners to get more data.”

They’ve also had to address a class imbalance in the data set. “We have a lot more 0’s and 1’s than 3’s and 4’s, for example,” said Sadhwani. As the disease progresses to stage four (known as proliferative diabetic retinopathy, or PDR), image data is more rare. A total of about 10,000 stage four images are required for optimal results.

The training problem is run on AWS Elastic Compute Cloud (EC2) with single-GPU and multi-GPU nodes. Some S3 storage and Elastic Block Store (EBS) services are also employed. The training takes about three days to a week for a given model.

Within EC2, the researchers are using Starcluster which lets them build custom clusters among the nodes and network them together. They used a master node to store all their training data and up to 28 different training nodes. All these separate training nodes would access the master node so they wouldn’t have to mirror the data onto each of the nodes.

“With Starcluster and AWS you can bring up different node types independently on demand,” said Su. “So we would run this experiment that would only need a single-GPU node and then after that finished we could shut down that node and save money. Then we would scale it up to a larger resolution image and we would need four-GPU nodes for that – so we’d spin that up, train on that, and come back three days later and shut that off. AWS provides this flexibility for scaling up and scaling down for cost and for trying out different ideas.”

The researchers relied on AWS spot instance pricing to further improve the economics. Their program saves a state every “epoch,” which relates to one pass through the data set, so losing a node did not incur a big setback. With 55 epochs in a run, the most they would lose is 1/55th of their training progress.

They used the g2.2xlarge instance type and the g2.8xlarge instance type for training their final models. They trained two kinds of models, one on low-res images and the final model on high-res images, for which they employed the larger multi-GPU nodes.

Amazon’s GPU instances are based on older Nvidia GRID K520 graphics cards, which at 4 GB per GPU do not have an ideal memory profile for training based on very high-resolution images.

“Typically in deep learning, you have a 256×256 image, or about one-sixteenth of a megapixel and we’re at four megapixels, so memory is a huge part of doing this problem,” said Sadhwani. “Our workaround was to scale to 4-GPU nodes, which effectively had 4 gigabytes of memory each [GPU], but we lose some to overhead because we have to have the model independently at each of the separate GPUs. It would be more advantageous to have a single GPU with a full 16 gigabytes.”

Because their model was dealing with these high-resolution images, they used Torch to split it across the 4-GPU node to fine-tune its parameters. Currently, they are moving to a distributed training model, which enables several different nodes to train essentially the same model but with independent data. This gives them the ability to train one model across many GPUs, rather than a single model on a single GPU node and thus accelerates the training.

The researchers are eyeing clouds with higher-memory GPUs, which could mean holding out for upgraded Amazon instances or moving to the Microsoft Azure cloud with its Tesla K80s.

They are not interested in CPUs. “It would take significantly longer, at least a factor of 50,” said Sadhwani. “The kind of neural networks we are using [convolutional neural nets] harness parallelization a lot. Even if we were not using this special class of network, there is at least a 10x speedup going from CPUs to GPUs, but for this particular variety that speedup is magnified a lot more, in the neighborhood of 100x.”

Diabetic retinopathy is a disease of the blood vessels in the eye. As the sugar level in the blood rises, it causes the walls of the blood vessels to thin and eventually they’ll crack and bleed. The most important thing to look for is tiny dot bleeds, called hemorrhages. They are very small and difficult to locate even with advanced algorithms. The deep learning model must also be trained to ignore or flag likely camera artifacts, which appear in approximately 40 percent of the images, and can obscure identification of disease traits.

To address these challenges, the Stanford team’s approach uses two networks, a lesion detector and a main network. The lesion detector looks at a small part of the image and outputs a number between 0 and 1, a probability. The lesion detector has so far achieved an accuracy of 99 percent for negatives and 76 percent for positives. The purpose of the main network is to characterize details about where the disease-related features are with respect to the important parts of the eye.

Source: Automatic Grading of Eye Diseases Through Deep Learning, 2016

The outputs of these two pipelines are then fused together. This provides a way to combine low-level details about where there are dot hemorrhages with high-level information like which parts of the image should actually be ignored because they are corrupted by artifacts. The fuse network is responsible for integrating all these signals together to deliver a final probability for the disease class.

Right now the team has been working with five classes, but they say that in the clinical setting, these grades are not tracked with such granularity. In terms of intervention, there are really three stages: 0) no action is required; 1) monitor the progress of the disease; and 2) medical intervention such as surgery is required.

“Moving to three-classes would increase the accuracy of our models because it’s a simpler problem and easier to solve,” said Su.

The ultimate goal here is to deliver a digital assistant to radiologists, opthamologists and other clinicians, so they can screen more patients, more frequently.

“Using an automated tool to augment human resources, you can more closely monitor the changes in the disease state as they progress to more effectively treat the disease,” said Su.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This