Larry Smarr Helps NCSA Celebrate 30th Anniversary

By John Russell

September 20, 2016

Throughout the past year, the National Center for Supercomputing Applications has been celebrating its 30th anniversary. On Friday, Larry Smarr, whose unsolicited 1983 proposal to the National Science Foundation (NSF) begat NCSA in 1985 and helped spur NSF to create not one but five national centers for supercomputing, gave a celebratory talk at NCSA. In typical fashion, Smarr not only revisited NCSA’s storied past, spreading credit liberally among collaborators, but also glimpsed into scientific supercomputing’s future saying, “This part is on me”

Many of his themes were familiar but a couple veered off the beaten path – “The human stool” (yes that stool) said Smarr “is the most information-rich material you have ever laid eyes on.” Its enormous data requirements will “dwarf a lot of our physics and astronomy as we really get to precision medicine and that means we are going to need a lot more computer time.” More on this later, replete with metrics and why deciphering the microbiome will require supercomputing.

Here are few of the topics Smarr sailed through:

  • NSF Uniqueness.
  • Big Data and the Rise of Neuromorphic Computing
  • Scientific Visualization.
  • Exascale with and without Exotics
  • Why the Microbiome is Important.
  • Artificial Intelligence is Coming. Soon.

NCSA, based at the University of Illinois, Urbana-Champaign (UIUC), is a U.S. supercomputing treasure. Its current flagship, Blue Waters from Cray, is roughly fifty million times faster than the original Cray X-MP machine that Smarr and his team installed at NCSA’s ambitious start. Even the floor housing the first Cray required $2M in renovations, kicked in by UI. It was a big undertaking to say the least. Since then Blue Waters and its lineage have handled a wide variety of academic and government research, broken new ground in scientific visualization, and promoted industrial collaboration.

Larry Smarr
Larry Smarr

Smarr, of course, was NCSA’s first director. Today, he is director of California Institute for Telecommunications and Information Technology (Calit2), a UC San Diego/UC Irvine partnership. An astrophysicist by training, his work spans many disciplines and is currently focused on the microbiome; the common thread is his drive to use of supercomputing to solve important scientific problems. (Currently Bill Gropp is acting NCSA director and Ed Seidel, the current director, has stepped up to serve as interim vice president for research for the University of Illinois System.)

Smarr recalled his “ahha moment” that supercomputers should be more widely available and applied in science. He was at UIUC, busily applying computational methods to astrophysics, most famously his effort to solve general relativity equations for colliding black holes using numerical methods, an approach many colleagues thought a fool’s errand. Last year’s LIGO results proved dramatically otherwise. (See HPCwire article, story Gravitational Waves Detected! Historic LIGO Success Strikes Chord with Larry Smarr)

At the time, UIUC had a “VAX 11/780 and the VIP, the “VAX and Image Processing facility, which was about as good as any professors had in the country,” recalled Smarr. He had the chance to go to the Max Planck Institute to work with Karl-Heinz Winkler and Mike Norman and their supercomputer, a Cray 1. “Code that had taken 8 hours on the VAX, overnight – that’s the rate of progress you could make, one 8-hour run a night – I put on the Cray started to go off to lunch.” Before he left the room, the job finished. “I said that’s not possible.” But it was. The Cray 1 was about 400x faster, changing an 8-hour VAX run into a one minute Cray run. “Every ten minutes I could make the same scientific progress that I was making every day. That was the ahaha moment.”

The rest is supercomputing history. Encouraged by Rich Isaacson, NSF’s Division Director for gravitational research, Smarr’s 1983 proposal percolated though NSF culminating with the award in 1985. Perhaps not surprisingly, the Max Planck open-access approach was the model, with Illinois cloning Lawrence Livermore’s machine room. Smarr emphasized many voices and individual efforts were involved in bringing NCSA to fruition. His talk briefly covered supercomputing’s past, present, and future – with many colorful anecdotes. NCSA has posted a video of Smarr’s full talk; a link is included at the end of this article.

NSF Matters…and So Does Risk Taking

Early in his talk, Smarr paid tribute to NSF. NCSA and its four siblings represented one of NSF’s big bets. The LIGO program (Laser Interferometer Gravitational-wave Observatory (LIGO) was perhaps the longest and most expensive individual NSF-funded program and also a huge risk. Both are delivering groundbreaking science. Taking on big risk-big reward projects is something NSF can and should do. We probably don’t do enough of them today, he suggested.

He recalled that when Isaacson encouraged him to submit the ‘NCSA’ proposal, Smarr responded, “But there is no program at NSF for this and Isaascon said, at ‘NSF we believe in proposal pressure from the community.’”

smarr-ncsa-center-proposalNCSA switched from specially designed Cray’s to microprocessor based machines from SGI in 1995, another big bet on a new idea. Global demand for microprocessors was growing a whole lot faster than the demand by “the few hundreds of people that bought Crays.” Smarr and NCSA, backed by NSF-funding, bet on microprocessors for the next machine in what he calls a historic shift.

“We’d be about a 10,000 times slower today [if we had not chosen microprocessors]. It is this ability to take risks based on your knowledge of where the technology is going that has made all the difference,” he said. “The NSF is unique in my view in the world in continually working at the outer edge, driven by the best ideas that come out of the user community, and then those breakthroughs are very well coupled back into the corporate world.”

Since today we have smart phones whose processing power far exceeds early supercomputers, there are some who contend NSF’s supercomputer support must be done. Hardly, says Smarr. Rather, “NSF just keeps moving the goal lines exponentially ahead of the consumer market and that is one of the most important things that keeps the United States in its competitive position worldwide.”

I See You – Insight from Sight

Even at the start of computing, he said, John von Neumann understood the need to make results more readily understandable. “In the early days, when computers were at about a floating point operation a second (FLOPs), von Neumann said they would generate so much data that it would overwhelm the human mind and so we needed to turn the data stream flowing from the computer into a visualization by running the output of the computer into an oscilloscope. So this idea was there from the very beginning, but NCSA took it to a whole another level.”

Scientific visualization has jumped way beyond oscilloscopes. Think 3D immersion CAVE environments, and more, said Smarr citing the NCSA-Caterpillar collaboration. “Caterpillar drove [technology advance] by their investments in NCSA and interest in using virtual reality to create working models in virtual reality of their new earth moving machines before they were built, just out of the CAD/CAM drawing. They were actually worked with us to show how you could have a global set of Caterpillar people working on details like where do we put the fuel tank opening and operator visibility.”

The idea of visualization is not pretty pictures; it’s insight. If you’ve got a computer “doing in those days a few billion 13-digit multiplies a second, which of those numbers do you want to look at to get that understanding? So the idea of scientific visualization was actually an intermediary technology to the human eye-brain system, the best pattern recognition computer yet.”

Of course, that doesn’t preclude pretty pictures that are content rich. Smarr cited NCSA alum, Stefan Fangmeier, who took ideas nurtured at NCSA to Industrial Light & Magic showing that science, not just an artist’s imagination, could be used to convey information: resulting in the computer graphics seen in films such as “Twister, Jurassic Park, Terminator, Perfect Storm, and so forth.”

smarr-ncsa-visualization-ent

The staggering growth of data will require ever improving visualization techniques the make insight more readily accessible.

Brain-Inspired Computing Architectures

We’ll probably get to exascale computing using traditional architecture, thought Smarr. But to make sense of the tremendous data deluge as well as to progress in deep learning (et al.) better pattern recognition technology will be required. Brain-inspired computing is a new source of inspiration and perhaps further along that many realize. A hybrid computing architecture is likely to emerge, mimicking in a way the so-called human right/left brain dichotomy.

“We are in a moment of transition in which data science and data analysis is becoming as important if not more important than traditional supercomputing,” said Smarr. New approaches beyond today’s cloud computing are needed and brain-inspired co-processors looks prominent among them.

“To research this new paradigm, Calit2 has set up a Pattern Recognition Lab (PRL) to bring this whole new generation of non-von Neumann processors in, put them in the presence of GPUs and Intel multicores to handle the general purpose stuff, then [porting] all the different machine learning algorithms onto them, optimizing them for a very wide set of applications.”

smarr-ncsa-ibm-true-northHe’s hardly alone in this thinking and cited other suchs as Horst Simon and Jack Dongarra who’ve voiced similar opinions. He singled out IBM’s True North neuromorphic chip, the first non-von Neumann chip in the Calit2 PRL, that put a million neurons and 256 million synapses in silicon, “the most components [on a] chip IBM has ever fabbed.” Lawrence Livermore National Laboratory – “whose supercomputer machine room we cloned, explicitly to make NCSA” –bought a 4X4 array of these neuromorphic chips and is collaborating with IBM to build a brain inspired supercomputer that will be used in deep learning.

Most recently the PRL has added a radical new chip architecture produced by a San Diego startup. Smarr helped to recruit Dan Goldin, the longest serving NASA administrator, to La Jolla, CA over ten years ago to do a startup, (KnuEdge). “This isn’t your typical startup-Dan is now in his mid-70s. But ten years ago Dan spent two years in the Neuroscience Institute to figure out how to put into silicon what they had learned about how the brain learns.” Dan then worked with Calit2 to prototype the first design of a computer board.

In June 2016, KnuEdge came out of stealth with its Hermosa chip. It’s a multilayer “cluster of digital signal processors that don’t have a clock, so it is asynchronous. Their Lambda Fabric is a completely different architecture than what we’re used to working with. That is now in our PRL,” said Smarr.

One of the brain’s advantages everyone is chasing is low power consumption. “Biological evolution has figured out how to get a computer to run a million times more energy efficient than an Exascale will run at and we cannot throw that away kind of advantage. So what I have been saying for 15 years is we’re going to have a new form of computer science and engineering emerge which abstracts out of biologically evolved entities what the principles of organization of those ‘computers’, if you like, are which is totally different than engineered computers.” (See HPCwire article, Think Fast – Is Neuromorphic Computing Set to Leap Forward?)

The Microbiome, Precision Medicine and Computing

Research in recent years has shown how important the microbiome – the population of bacteria in each of us – is to health. If genes and gene products are the key players in physiology, then the numbers tell the microbiome’s story. Inside most people there are around 10x more DNA-bearing bacteria cells than human DNA-bearing cells and 100x more bacteria genes of the microbial DNA than in the human DNA. What’s more the mix of species and their relative proportions inside a persons matter greatly.

Put simply ‘good’ bacteria promote health and help keep bad bacteria in check.

smarr-ncsa-microbiomeThis is the “dark matter” of healthcare, said ex-cosmologist Smarr, and our efforts to understand and use the microbiome “will be completely transformative to medicine over the next five to ten years,” thinks Smarr and others agree. There is even a U.S. Presidential initiative Microbiome Project in addition to the U.S. Precision Health Initiative. Understanding the microbiome and effectively using it will require sequencing and regular monitoring – think time series experiments – of related biomarkers.

It turns out Smarr has been doing this on himself and discovered he has a gene variant which inclines him to Inflammatory Bowel Disease, which may in the future be treated by “gardening your microbiome’s ecology”. Skipping some of the details, the computational challenge is immense. His team started several years ago with a director’s discretionary grant on Gordon, provided by SDSC director Mike Norman. “Our team used 25 CPU-years to compute comparative gut microbiomes starting from 2.7 trillion DNA bases of my samples along with healthy and IBD subjects.”

He compared this work to his early work in the 1970s on general relativistic black hole dynamics, which took several hundred hours on a CDC 6600 versus the 800,000 or so core hours he, UCSD’s Rob Knight and their team is currently using on San Diego Supercomputing Center’s Comet working on microbiome ecology dynamics. Performing this kind of analysis on a population-wide scale, on an ongoing basis, is a huge compute project. There are 100 million times as many bacteria on earth as all the stars in the universe, noted Smarr, quoting Professor Julian Davies that once the diversity of the microbial world is cataloged, it will make “astronomy look like a pitiful science.”

All netted down, he said “Living creatures are information entities, working their software out in organic chemistry instead of silicon, and that information is your DNA, but it’s both in your human and the microbes’ DNA. When you want to read out the state of that person you need to look at time series of the biomarkers in your blood and stool. If that’s going to be the future and my job has always been to live in the future, then I should turn my body into a biomarker and genomics “observatory” and I started taking blood measurements and stool measurements periodically.

smarr-ncsa-smarr-microbiome“Your stool by the way doesn’t get much respect – we’ve got to work on our attitude a little because stool is 40 percent microbes and 1 gram of stool contains 1 billion microbes, each of which has a DNA molecule 3-5million bases long. So it’s the most information rich material you have ever laid eyes on.”

You get the idea.

Preparing for Artificial Intelligence

Smarr’s last slide, shown below, contained a set of ominous quotes on the dangers of artificial intelligence from Steven Hawking, Bill Joy, Elon Musk, and Martin Rees – names familiar to most of us and all people whom Smarr knows. He didn’t dwell on the dangers, but directly acknowledged they are real. He spent more time on why he thinks AI is closer than we may realize, how it can be beneficial, and suggested one way to prepare is for NSF to start stimulating thought on AI issues in youth and young scientists.

The technology itself is advancing on many fronts, whether running machine learning on traditional CPU/GPUs or emerging neuromorphic (Smarr didn’t discuss quantum computing in his talk). He noted that LBNL’s Deputy Director Horst Simon predicts that in the 2020-2025 timeframe, an exascale supercomputer will be able to run a simulation of 100% of the scale of the human brain in real time. “It will be effectively as fast as a human brain,” said Smarr. What that means in terms of applications and AI precisely remains unclear. But the technology will get us there.

Today, everyone’s favorite example of that state of machine learning as a surrogate for AI seems to be Google DeepMind system’s recent victory over Lee Sedol of Korea, one of the world’s best Go champions this spring.

“Google took 30 million moves of the best Go masters on the planet and fed those in as training sets. That [alone] would have made a computer hold its own against top Go players. But then Google’s team ran the trained AI against itself for millions of times coming up with moves of Go that no human had ever conceived of,” said Smarr, “So in less than two years from when Wired magazine ran a story titled ‘Go, the Ancient Game That Computers Still Can’t Win,’ Google [won].”

“Then Google takes that incredible software, what a treasure trove, and makes it open source and gives it to the world community in TensorFlow. We are using this every day at Calit2 to program these new chips (KnuEdge).” A research effort Smarr cited, being led by Jeremy Howard, is attempting to teach machines to read medical xrays as well as ‘the best doctor in the world “using TensorFlow. Howard says basically instead of programming the computer to do something, you give it a few examples and let it figure out how to do that. That’s the new paradigm.”

In fact, there are many aggressive efforts to develop the new paradigm and many of those efforts involve corporate IT giants advancing AI for their own purposes and putting their technology into the hands of academia for further development, pointed out Smarr. IBM is “betting the farm on Watson”. All of the new systems will not merely be powerful but hooked into vast databases.

For a feel of where this is going, consider the movie Her. “All of you should see it if you want to experience one of the best examples of speculative fiction painting a picture of where this process is taking us, where we all have individualized personalized AI agents, who learn more and more about you the more you interact with the [system]. And they are working with everybody across the planet simultaneously,” said Smarr.

smarr-ncsa-ai-quotes

Sounds very Big Brother-ish, and it could be agrees Smarr. However he remains optimistic. Like many of his generation, he grew up reading science fiction including Isaac Asimov’s many robot-themed works.

“Asimov had the three laws to protect the robots from doing harm to humans. We’ll get through this AI transition I believe, but only if everybody realizes this is a one of the most important change moments in human history, and it isn’t going to be happening 100 years from now, but rather it’s going to be in the next five, 10, to 20 years. One of the things I am hoping is NSF will be funding a lot of this research into the universities and to young people where they can start imagining these futures, playing with these new technologies, and helping us avoid some of the risks that these four of the smartest people on the planet are talking about here. My guess is that NCSA and the University of Illinois at Urbana-Campaign will be leaders in that effort,” concluded Smarr.

Link to NCSA video of Smarr’s talk: https://mediaspace.illinois.edu/media/50+years+of+supercomputingA+From+colliding+black+holes+to+dynamic+microbiomes+to+the+exascale/1_n3dujwdk/29471061

Slides courtesy of NCSA/Smarr

Link to full slide deck: http://lsmarr.calit2.net/presentations?slideshow=66106598

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitment to holistic sustainability as well as launching a managed Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. Well, say hello to Pluribus, an upgraded bot, which has now be Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. We Read more…

By John Russell

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This