Dell EMC Engineers Strategy to Democratize HPC

By Tiffany Trader

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences.

“Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure,” said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division.

The Engineered Solutions Labs at Dell’s Parmer Campus just outside Austin, as well as a new web-based system configurator aimed at streamlining the ordering and deployment process, factor prominently in Dell EMC’s plan to make HPC more accessible. That automated configurator is called System Builder and we’ll come back to how it works in a bit.

Earlier this month – the same week that the Dell-EMC merger became official — HPCwire paid a visit to the Dell EMC HPC Innovation Lab, part of the company’s Engineered Solutions Labs. The 13,000 sq. ft. shared facility houses over 1,000 servers, a range of generations and form factors targeting not only high-performance computing, but also private cloud solutions and HANA in-memory analytics workloads.

dell-emc-hpc-innovation-lab-1200x
Dell EMC Engineered Solutions Labs (Source: Dell EMC)

The HPC Innovation Lab is where Dell EMC engineers bring together compute, storage and networking technologies to build end-to-end HPC solutions. The lab’s HPC gear is focused on Dell’s spotlight verticals as well as more traditional HPC users from the government and academic arena. While some of the lab testbeds are still under wraps at this time, Dell is working with the latest technology from Intel, Nvidia, and Mellanox to understand and characterize the performance impact they have as part of a Dell EMC solution.

“We want to give our customers, our partners, our ISVs the latest and greatest access to all the technologies whether it’s Knights Landing, Omni-Path, Mellanox, Nvidia, Bright Computing, and others,” said Ganthier. “This is a chance for them to bring their workloads, play in our sandbox and in essence tune it long before it’s readily available.”

Naturally Isilon and other EMC-acquired storage technologies will also be featured prominently. Isilon is especially important in the bioinformatics sphere. “Bringing EMC Isilon together with the Dell HPC System for Life Sciences gives us a killer solution for that area,” said Ganthier.

Domain expertise is a priority for Dell EMC. “We have an engineer who worked for years at Boeing doing engine designs; he is working on our manufacturing configurations,” said Onur Celebioglu, HPC Engineering Director at Dell EMC and head of the Innovation Lab. “We have another engineer with a Masters in bioinformatics and a PhD in computer science who is working on our life sciences system for genomics. And we have engineers with computer science backgrounds, providing expertise in file systems, interconnects, and HPC management tools.”

“HPC customers being very technically oriented, they really appreciate that one-to-one engineer-to-engineer interaction,” Celebioglu continued. “We bring customers in this lab when they come visit Austin – and we let our engineers have direct interaction with our customers so that we can learn from what their needs and problems are and so they can understand the expertise that we have put in to solve their problems.”

In keeping with its specific vertical focus, the lab is home to a life sciences testbed, the Genomics Data Analysis Platform, and a manufacturing testbed, the Dell HPC System for Manufacturing, which Dell uses to PoC and optimize customer codes and to design reference architectures.

dell-genomics-data-analysis-platform-800xDell built the bioinformatics system in collaboration with its customer, TGEN, who was running a workload to analyze genome data to come up with customized treatment options for a rare form of pediatric cancer called neuroblastoma. Moving from workstations to a Dell HPC infrastructure, TGEN reduced its runtime from weeks down to just four hours per patient, said Dell EMC.

The platform is comprised of 40 Dell PowerEdge FC430 nodes, interconnected with InfiniBand. On top of the compute nodes are a parallel file system configuration with Lustre, an HPC-optimized NFS configuration and all the infrastructure nodes.

After Dell built and designed this testbed, it ran human genome pipelines in order to characterize the performance of the configuration. Lab staff also ran plants and animal genome pipelines and wrote a white paper describing the configuration and performance and power consumption metrics in a domain specific way.

“If you look at the specs of the system, it’s not provided in gigaflops or gigabytes per second,” said Celebioglu. “We try to spec this out in genomes you can analyze per day and or genomes you can analyze per watt and find the breaking point as to when do you need a parallel file system, when do you need a fast interconnect, when do you need to add other infrastructure nodes, so that we can come up with guidelines based on their needs of what size system they need to deploy for a given performance metric. That gets translated into our System Builder tool so our sales teams can go into that tool and say I want to design a system for 20 genomes per day and can come up with the right size configuration for that metric.”

dell-hpc-system-for-manufacturing-800xDell is doing the same thing for manufacturing. “We are coming up with fine-tuned systems for manufacturing applications to be able to do CFD/CAE analysis,” said Celebioglu. “Our approach here is more modular in that we are defining node types for implicit solvers and explicit solvers – one is more for crash simulation and CFD and the other is more for vibration testing and drop testing, and then we are combining those different modules together based on how many explicit solver customer needs how many implicit solver the customer needs.

“To come up with the design for those modular building blocks, we had to run a lot of these applications in-house, like ANSYS, LSTC [Livermore Software Technology Corporation], Nastran, try different processor SKUs, try different memory configurations, try different storage configurations and come up with the right components for those applications – and those went into our reference designs and system architectures.”

Both the life sciences and the manufacturing testbeds are straight x86 systems, but there are GPU-and Phi-enabled node options in the lab as well. Dell reports being one of the first Intel partners to have Knights Landing parts on site and they have an Omni-Path installation as well.

“We have done tests both with GPUs and CPUs,” said Celebioglu. “Most of the next-gen sequencing applications use straight Xeon today but there are some very interesting application use cases in the molecular dynamics space. A lot of applications are ported to GPUs – and the Knights Landing processor looks interesting for those applications as well. We keep an open mind and we’re doing a lot of tests constantly to pick the right node types for the right applications.”

All this experience and tuning has culminated into a new way of doing requirements gathering with a web-based configurator called System Builder. The modules – currently there are two, one for life sciences and one for research, with a manufacturing version planned for Q4 of this year – require the user to answer between 10 and 17 qualifying questions to get a baseline configuration.

Dell’s intention is for System Builder to get the customer to 90-95 percent and have its solutions architects take them the rest of the way, but Dell has already had one customer (the first to use the configurator) take the order as-is.

“We had a North American university whose cluster was down and they needed to act quickly,” Ganthier explained. “An enterprising Dell salesperson who had the logins to System Builder shared it with the customer. That customer answered all the questions and not only took the configured system 100 percent as-is, but that system was delivered to them in record time.”

To be clear, the target customer for System Builder is the small to mid-range user, whose mission is not computer science focused. It’s not for large HPC sites with 1,000+ nodes.

The research module poses pretty standard questions about processor type, interconnect type, number of nodes/FLOPS, etc., but the life sciences module takes a more simplified approach, focusing more on the nature of the workload and business-outcome oriented questions and less on system specifics.

The very first question it asks is: “How many human genomes per day do you want to process?”

dell-emc-system-builder-for-life-sciences-screenshot
Dell EMC System Builder for Life Sciences screenshot

The next question asks if the system is intended for general purpose? A prompt provides guidance: “In addition to NGS data analysis pipelines, if the system will be used to run workloads requiring larger memory and higher CPU power (such as simulations or statistical analyses using SAS/R), then this should be set to ‘Yes’.”

“Since these are based on standard building blocks, we custom pick the components to best fit certain workloads but essentially you can run different workloads on the system – a lot of the genomics systems are also used to run statistical analysis packages like R and molecular dynamics packages,” Celebioglu explained.

Using System Builder feels a lot like shopping online but without the upfront pricing information. The six step process results in a unique solution ID number, which begins the normal sales cycle.

“This is very well tied in to our order input system,” said Celebioglu. “Once System Builder does all the calculation it outputs a suggested configuration which is a jumping off point for further discussion.”

“There’s a whole optimization process that takes place,” said Dell EMC HPC Strategist Ed Turkel. “It’s a little unusual to have that case of the customer that purchases exactly what comes out of System Builder. They may want to change the cables or the number of racks. Or they may want to compare the performance versus price tradeoffs for different processors.”

While much of the benefit of System Builder is aimed at streamlining the configuration and ordering process, Dell EMC is also emphasizing the last mile benefits.

“What arrives at the customer site is a configured system,” said Turkel. “It’s not 200 boxes that show up with instructions and a screwdriver and a wrench. The process is optimized at both ends.”

Dell has publicly announced three HPC System Builder modules and hinted of other versions to come.

“We want to disrupt multiple industries,” said Ganthier. “It’s not just about building the product; it’s about our ability to do advisory, consulting, access to experts and our innovation sandbox as well as providing lifecycle support.”

Dell/EMC Figure 2
This slide from the 2016 HPC User Forum in Austin, Texas (Sept. 7, 2016) depicts the other high-impact verticals that Dell is targeting; presented by Dell EMC HPC Strategist Ed Turkel

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This