IBM Advances Neuromorphic Computing for Deep Learning

By John Russell

September 29, 2016

Deep learning efforts today are run on standard computer hardware using convolutional neural networks. Indeed the approach has proven powerful by pioneers such as Google and Microsoft. In contrast neuromorphic computing, whose spiking neuron architecture more closely mimics human brain function, has generated less enthusiasm in the deep learning community. Now, work by IBM using its TrueNorth chip as a test case may bring deep learning to neuromorphic architectures.

Writing in the Proceedings of the National Academy of Science (PNAS) in August (Convolutional networks for fast, energy-efficient neuromorphic computing), researchers from IBM Research report, “[We] demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, perform inference while preserving the hardware’s underlying energy-efficiency and high throughput.”

The impact could be significant as neuromorphic hardware and software technology have been rapidly advancing on several fronts. IBM researchers ran the datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per watt). They report their approach allowed networks to be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. Basically, the new approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors.

“The new milestone provides a palpable proof of concept that the efficiency of brain-inspired computing can be merged with the effectiveness of deep learning, paving the path towards a new generation of chips and algorithms with even greater efficiency and effectiveness,” said Dharmendra Modha, chief scientist for brain-inspired computing at IBM Research-Almaden, in an interesting article by Jeremy Hsu on the IBM work posted this week on the IEEE Spectrum (IBM’s Brain-Inspired Chip Tested for Deep Learning.)

Fig. 2. Dataset samples. (A) CIFAR10 examples of airplane and automobile. (B) SVHN examples of the digits 4 and 7. (C) GTSRB examples of the German traffic signs for priority road and ahead only. (D) Flickr-Logos32 examples of corporate logos for FedEx and Texaco. (E) VAD example showing voice activity (red box) and no voice activity at 0 dB SNR. (F) TIMIT examples of the phonemes pcl, p, l, ah, z (red box), en, l, and ix.
Fig. 2.
Dataset samples. (A) CIFAR10 examples of airplane and automobile. (B) SVHN examples of the digits 4 and 7. (C) GTSRB examples of the German traffic signs for priority road and ahead only. (D) Flickr-Logos32 examples of corporate logos for FedEx and Texaco. (E) VAD example showing voice activity (red box) and no voice activity at 0 dB SNR. (F) TIMIT examples of the phonemes pcl, p, l, ah, z (red box), en, l, and ix.

Shown here are dataset samples the researcher worked with.

As Hsu points out in the IEEE Spectrum article, “Deep-learning experts have generally viewed spiking neural networks as inefficient – at least, compared with convolutional neural networks – for the purposes of deep learning. Yann LeCun, director of AI research at Facebook and a pioneer in deep learning, previously critiqued IBM’s TrueNorth chip because it primarily supports spiking neural networks. (See IEEE Spectrum’s previous interview with LeCun on deep learning.)

“The IBM TrueNorth design may better support the goals of neuromorphic computing that focus on closely mimicking and understanding biological brains, says Zachary Chase Lipton, a deep-learning researcher in the Artificial Intelligence Group at the University of California, San Diego. By comparison, deep-learning researchers are more interested in getting practical results for AI-powered services and products.”

IBM is trying to widen that perspective. Clearly, understanding brain function better is an important element neuromorphic computing research but so, increasingly, is developing real-world applications. Lawrence Livermore National Laboratory has purchased a True-North-bases system to explore and in Europe the Human Brain Project has opened up its two big machines, SpiNNaker at Manchester University, U.K., and BrainSaleS in Germany to researchers to develop applications and explore neuromorphic computing.

The IBM paper authors describe the traditional deep learning challenge well: “Contemporary convolutional networks typically use high precision (32-bit) neurons and synapses to provide continuous derivatives and support small incremental changes to network state, both formally required for back-propagation-based gradient learning. In comparison, neuromorphic designs can use one-bit spikes to provide event-based computation and communication (consuming energy only when necessary) and can use low-precision synapses to co- locate memory with computation (keeping data movement local and avoiding off-chip memory bottlenecks).”

By introducing two constraints into the learning rule – binary-valued neurons with approximate derivatives and trinary-valued synapses – the researchers say it is possible to adapt backpropagation to create networks directly implementable using energy efficient neuromorphic dynamics.

“For structure, typical convolutional networks place no constraints on filter sizes, whereas neuromorphic systems can take advantage of blockwise connectivity that limits filter sizes, thereby saving energy because weights can now be stored in local on-chip memory within dedicated neural cores. Here, we present a convolutional network structure that naturally maps to the efficient connection primitives used in contemporary neuromorphic systems. We enforce this connectivity constraint by partitioning filters into multiple groups and yet maintain network integration by interspersing layers whose filter support region is able to cover incoming features from many groups by using a small topographic size,” write the researchers whose project was funded by DAPRA as part of its Cortical Processor program aimed at brain-inspired AI that can recognize complex patterns and adapt to changing environments,” write the researchers.

Shown below is a figure of both conventional convolutional network and the TrueNorth approach.

Fig. 1. (A) Two layers of a convolutional network. Colors (green, purple, blue, orange) designate neurons (individual boxes) belonging to the same group (partitioning the feature dimension) at the same location (partitioning the spatial dimensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board) comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic array. Convolutional network neurons for one group at one topographic location are implemented using neurons on the same TrueNorth core (TrueNorth neuron colors correspond to convolutional network neuron colors in A), with their corresponding filter support region implemented using the core’s inputs, and filter weights implemented using the core’s synaptic array. (C) Neuron dynamics showing that the internal state variable V(t) of a TrueNorth neuron changes in response to positive and negative weighted inputs. Following input integration in each tick, a spike is emitted if V(t) is greater than or equal to the threshold θ=1. V(t) is reset to 0 before input integration in the next tick. (D) Convolutional network filter weights (numbers in black diamonds) implemented using TrueNorth, which supports weights with individually configured on/off state and strength assigned by lookup table. In our scheme, each feature is represented with pairs of neuron copies. Each pair connects to two inputs on the same target core, with the inputs assigned types 1 and 2, which via the look up table assign strengths of +1 or −1 to synapses on the corresponding input lines. By turning on the appropriate synapses, each synapse pair can be used to represent −1, 0, or +1.
Fig. 1.
(A) Two layers of a convolutional network. Colors (green, purple, blue, orange) designate neurons (individual boxes) belonging to the same group (partitioning the feature dimension) at the same location (partitioning the spatial dimensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board) comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic array. Convolutional network neurons for one group at one topographic location are implemented using neurons on the same TrueNorth core (TrueNorth neuron colors correspond to convolutional network neuron colors in A), with their corresponding filter support region implemented using the core’s inputs, and filter weights implemented using the core’s synaptic array.
(C) Neuron dynamics showing that the internal state variable V(t) of a TrueNorth neuron changes in response to positive and negative weighted inputs. Following input integration in each tick, a spike is emitted if V(t) is greater than or equal to the threshold θ=1. V(t) is reset to 0 before input integration in the next tick. (D) Convolutional network filter weights (numbers in black diamonds) implemented using TrueNorth, which supports weights with individually configured on/off state and strength assigned by lookup table. In our scheme, each feature is represented with pairs of neuron copies. Each pair connects to two inputs on the same target core, with the inputs assigned types 1 and 2, which via the look up table assign strengths of +1 or −1 to synapses on the corresponding input lines. By turning on the appropriate synapses, each synapse pair can be used to represent −1, 0, or +1.

In the IEEE article, Modha notes TrueNorth’s general design as an advantage over those of more specialized deep-learning hardware designed to run only convolutional neural networks because it will likely allow the running of multiple types of AI networks on the same chip. He’s quoted saying, “Not only is TrueNorth capable of implementing these convolutional networks, which it was not originally designed for, but it also supports a variety of connectivity patterns (feedback and lateral, as well as feed forward) and can simultaneously implement a wide range of other algorithms.”

In their paper, the authors emphasize that their work demonstrates more generally that “the structural and operational differences between neuromorphic computing and deep learning are not fundamental and points to the richness of neural network constructs and the adaptability of backpropagation. This effort marks an important step toward a new generation of applications based on embedded neural networks.” It’s bet to read the paper in full for details of the work.

Link to Paper: http://www.pnas.org/content/early/2016/09/19/1604850113.full

Link to Jeremy Hsu’s IEEE Spectrum article: http://spectrum.ieee.org/tech-talk/computing/hardware/ibms-braininspired-chip-tested-on-deep-learning

Link to related HPCwire coverage: Think Fast – Is Neuromorphic Computing Set to Leap Forward?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This