IBM Advances Neuromorphic Computing for Deep Learning

By John Russell

September 29, 2016

Deep learning efforts today are run on standard computer hardware using convolutional neural networks. Indeed the approach has proven powerful by pioneers such as Google and Microsoft. In contrast neuromorphic computing, whose spiking neuron architecture more closely mimics human brain function, has generated less enthusiasm in the deep learning community. Now, work by IBM using its TrueNorth chip as a test case may bring deep learning to neuromorphic architectures.

Writing in the Proceedings of the National Academy of Science (PNAS) in August (Convolutional networks for fast, energy-efficient neuromorphic computing), researchers from IBM Research report, “[We] demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, perform inference while preserving the hardware’s underlying energy-efficiency and high throughput.”

The impact could be significant as neuromorphic hardware and software technology have been rapidly advancing on several fronts. IBM researchers ran the datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per watt). They report their approach allowed networks to be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. Basically, the new approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors.

“The new milestone provides a palpable proof of concept that the efficiency of brain-inspired computing can be merged with the effectiveness of deep learning, paving the path towards a new generation of chips and algorithms with even greater efficiency and effectiveness,” said Dharmendra Modha, chief scientist for brain-inspired computing at IBM Research-Almaden, in an interesting article by Jeremy Hsu on the IBM work posted this week on the IEEE Spectrum (IBM’s Brain-Inspired Chip Tested for Deep Learning.)

Fig. 2. Dataset samples. (A) CIFAR10 examples of airplane and automobile. (B) SVHN examples of the digits 4 and 7. (C) GTSRB examples of the German traffic signs for priority road and ahead only. (D) Flickr-Logos32 examples of corporate logos for FedEx and Texaco. (E) VAD example showing voice activity (red box) and no voice activity at 0 dB SNR. (F) TIMIT examples of the phonemes pcl, p, l, ah, z (red box), en, l, and ix.
Fig. 2.
Dataset samples. (A) CIFAR10 examples of airplane and automobile. (B) SVHN examples of the digits 4 and 7. (C) GTSRB examples of the German traffic signs for priority road and ahead only. (D) Flickr-Logos32 examples of corporate logos for FedEx and Texaco. (E) VAD example showing voice activity (red box) and no voice activity at 0 dB SNR. (F) TIMIT examples of the phonemes pcl, p, l, ah, z (red box), en, l, and ix.

Shown here are dataset samples the researcher worked with.

As Hsu points out in the IEEE Spectrum article, “Deep-learning experts have generally viewed spiking neural networks as inefficient – at least, compared with convolutional neural networks – for the purposes of deep learning. Yann LeCun, director of AI research at Facebook and a pioneer in deep learning, previously critiqued IBM’s TrueNorth chip because it primarily supports spiking neural networks. (See IEEE Spectrum’s previous interview with LeCun on deep learning.)

“The IBM TrueNorth design may better support the goals of neuromorphic computing that focus on closely mimicking and understanding biological brains, says Zachary Chase Lipton, a deep-learning researcher in the Artificial Intelligence Group at the University of California, San Diego. By comparison, deep-learning researchers are more interested in getting practical results for AI-powered services and products.”

IBM is trying to widen that perspective. Clearly, understanding brain function better is an important element neuromorphic computing research but so, increasingly, is developing real-world applications. Lawrence Livermore National Laboratory has purchased a True-North-bases system to explore and in Europe the Human Brain Project has opened up its two big machines, SpiNNaker at Manchester University, U.K., and BrainSaleS in Germany to researchers to develop applications and explore neuromorphic computing.

The IBM paper authors describe the traditional deep learning challenge well: “Contemporary convolutional networks typically use high precision (32-bit) neurons and synapses to provide continuous derivatives and support small incremental changes to network state, both formally required for back-propagation-based gradient learning. In comparison, neuromorphic designs can use one-bit spikes to provide event-based computation and communication (consuming energy only when necessary) and can use low-precision synapses to co- locate memory with computation (keeping data movement local and avoiding off-chip memory bottlenecks).”

By introducing two constraints into the learning rule – binary-valued neurons with approximate derivatives and trinary-valued synapses – the researchers say it is possible to adapt backpropagation to create networks directly implementable using energy efficient neuromorphic dynamics.

“For structure, typical convolutional networks place no constraints on filter sizes, whereas neuromorphic systems can take advantage of blockwise connectivity that limits filter sizes, thereby saving energy because weights can now be stored in local on-chip memory within dedicated neural cores. Here, we present a convolutional network structure that naturally maps to the efficient connection primitives used in contemporary neuromorphic systems. We enforce this connectivity constraint by partitioning filters into multiple groups and yet maintain network integration by interspersing layers whose filter support region is able to cover incoming features from many groups by using a small topographic size,” write the researchers whose project was funded by DAPRA as part of its Cortical Processor program aimed at brain-inspired AI that can recognize complex patterns and adapt to changing environments,” write the researchers.

Shown below is a figure of both conventional convolutional network and the TrueNorth approach.

Fig. 1. (A) Two layers of a convolutional network. Colors (green, purple, blue, orange) designate neurons (individual boxes) belonging to the same group (partitioning the feature dimension) at the same location (partitioning the spatial dimensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board) comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic array. Convolutional network neurons for one group at one topographic location are implemented using neurons on the same TrueNorth core (TrueNorth neuron colors correspond to convolutional network neuron colors in A), with their corresponding filter support region implemented using the core’s inputs, and filter weights implemented using the core’s synaptic array. (C) Neuron dynamics showing that the internal state variable V(t) of a TrueNorth neuron changes in response to positive and negative weighted inputs. Following input integration in each tick, a spike is emitted if V(t) is greater than or equal to the threshold θ=1. V(t) is reset to 0 before input integration in the next tick. (D) Convolutional network filter weights (numbers in black diamonds) implemented using TrueNorth, which supports weights with individually configured on/off state and strength assigned by lookup table. In our scheme, each feature is represented with pairs of neuron copies. Each pair connects to two inputs on the same target core, with the inputs assigned types 1 and 2, which via the look up table assign strengths of +1 or −1 to synapses on the corresponding input lines. By turning on the appropriate synapses, each synapse pair can be used to represent −1, 0, or +1.
Fig. 1.
(A) Two layers of a convolutional network. Colors (green, purple, blue, orange) designate neurons (individual boxes) belonging to the same group (partitioning the feature dimension) at the same location (partitioning the spatial dimensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board) comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic array. Convolutional network neurons for one group at one topographic location are implemented using neurons on the same TrueNorth core (TrueNorth neuron colors correspond to convolutional network neuron colors in A), with their corresponding filter support region implemented using the core’s inputs, and filter weights implemented using the core’s synaptic array.
(C) Neuron dynamics showing that the internal state variable V(t) of a TrueNorth neuron changes in response to positive and negative weighted inputs. Following input integration in each tick, a spike is emitted if V(t) is greater than or equal to the threshold θ=1. V(t) is reset to 0 before input integration in the next tick. (D) Convolutional network filter weights (numbers in black diamonds) implemented using TrueNorth, which supports weights with individually configured on/off state and strength assigned by lookup table. In our scheme, each feature is represented with pairs of neuron copies. Each pair connects to two inputs on the same target core, with the inputs assigned types 1 and 2, which via the look up table assign strengths of +1 or −1 to synapses on the corresponding input lines. By turning on the appropriate synapses, each synapse pair can be used to represent −1, 0, or +1.

In the IEEE article, Modha notes TrueNorth’s general design as an advantage over those of more specialized deep-learning hardware designed to run only convolutional neural networks because it will likely allow the running of multiple types of AI networks on the same chip. He’s quoted saying, “Not only is TrueNorth capable of implementing these convolutional networks, which it was not originally designed for, but it also supports a variety of connectivity patterns (feedback and lateral, as well as feed forward) and can simultaneously implement a wide range of other algorithms.”

In their paper, the authors emphasize that their work demonstrates more generally that “the structural and operational differences between neuromorphic computing and deep learning are not fundamental and points to the richness of neural network constructs and the adaptability of backpropagation. This effort marks an important step toward a new generation of applications based on embedded neural networks.” It’s bet to read the paper in full for details of the work.

Link to Paper: http://www.pnas.org/content/early/2016/09/19/1604850113.full

Link to Jeremy Hsu’s IEEE Spectrum article: http://spectrum.ieee.org/tech-talk/computing/hardware/ibms-braininspired-chip-tested-on-deep-learning

Link to related HPCwire coverage: Think Fast – Is Neuromorphic Computing Set to Leap Forward?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This