IBM Advances Neuromorphic Computing for Deep Learning

By John Russell

September 29, 2016

Deep learning efforts today are run on standard computer hardware using convolutional neural networks. Indeed the approach has proven powerful by pioneers such as Google and Microsoft. In contrast neuromorphic computing, whose spiking neuron architecture more closely mimics human brain function, has generated less enthusiasm in the deep learning community. Now, work by IBM using its TrueNorth chip as a test case may bring deep learning to neuromorphic architectures.

Writing in the Proceedings of the National Academy of Science (PNAS) in August (Convolutional networks for fast, energy-efficient neuromorphic computing), researchers from IBM Research report, “[We] demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, perform inference while preserving the hardware’s underlying energy-efficiency and high throughput.”

The impact could be significant as neuromorphic hardware and software technology have been rapidly advancing on several fronts. IBM researchers ran the datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per watt). They report their approach allowed networks to be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. Basically, the new approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors.

“The new milestone provides a palpable proof of concept that the efficiency of brain-inspired computing can be merged with the effectiveness of deep learning, paving the path towards a new generation of chips and algorithms with even greater efficiency and effectiveness,” said Dharmendra Modha, chief scientist for brain-inspired computing at IBM Research-Almaden, in an interesting article by Jeremy Hsu on the IBM work posted this week on the IEEE Spectrum (IBM’s Brain-Inspired Chip Tested for Deep Learning.)

Fig. 2. Dataset samples. (A) CIFAR10 examples of airplane and automobile. (B) SVHN examples of the digits 4 and 7. (C) GTSRB examples of the German traffic signs for priority road and ahead only. (D) Flickr-Logos32 examples of corporate logos for FedEx and Texaco. (E) VAD example showing voice activity (red box) and no voice activity at 0 dB SNR. (F) TIMIT examples of the phonemes pcl, p, l, ah, z (red box), en, l, and ix.
Fig. 2.
Dataset samples. (A) CIFAR10 examples of airplane and automobile. (B) SVHN examples of the digits 4 and 7. (C) GTSRB examples of the German traffic signs for priority road and ahead only. (D) Flickr-Logos32 examples of corporate logos for FedEx and Texaco. (E) VAD example showing voice activity (red box) and no voice activity at 0 dB SNR. (F) TIMIT examples of the phonemes pcl, p, l, ah, z (red box), en, l, and ix.

Shown here are dataset samples the researcher worked with.

As Hsu points out in the IEEE Spectrum article, “Deep-learning experts have generally viewed spiking neural networks as inefficient – at least, compared with convolutional neural networks – for the purposes of deep learning. Yann LeCun, director of AI research at Facebook and a pioneer in deep learning, previously critiqued IBM’s TrueNorth chip because it primarily supports spiking neural networks. (See IEEE Spectrum’s previous interview with LeCun on deep learning.)

“The IBM TrueNorth design may better support the goals of neuromorphic computing that focus on closely mimicking and understanding biological brains, says Zachary Chase Lipton, a deep-learning researcher in the Artificial Intelligence Group at the University of California, San Diego. By comparison, deep-learning researchers are more interested in getting practical results for AI-powered services and products.”

IBM is trying to widen that perspective. Clearly, understanding brain function better is an important element neuromorphic computing research but so, increasingly, is developing real-world applications. Lawrence Livermore National Laboratory has purchased a True-North-bases system to explore and in Europe the Human Brain Project has opened up its two big machines, SpiNNaker at Manchester University, U.K., and BrainSaleS in Germany to researchers to develop applications and explore neuromorphic computing.

The IBM paper authors describe the traditional deep learning challenge well: “Contemporary convolutional networks typically use high precision (32-bit) neurons and synapses to provide continuous derivatives and support small incremental changes to network state, both formally required for back-propagation-based gradient learning. In comparison, neuromorphic designs can use one-bit spikes to provide event-based computation and communication (consuming energy only when necessary) and can use low-precision synapses to co- locate memory with computation (keeping data movement local and avoiding off-chip memory bottlenecks).”

By introducing two constraints into the learning rule – binary-valued neurons with approximate derivatives and trinary-valued synapses – the researchers say it is possible to adapt backpropagation to create networks directly implementable using energy efficient neuromorphic dynamics.

“For structure, typical convolutional networks place no constraints on filter sizes, whereas neuromorphic systems can take advantage of blockwise connectivity that limits filter sizes, thereby saving energy because weights can now be stored in local on-chip memory within dedicated neural cores. Here, we present a convolutional network structure that naturally maps to the efficient connection primitives used in contemporary neuromorphic systems. We enforce this connectivity constraint by partitioning filters into multiple groups and yet maintain network integration by interspersing layers whose filter support region is able to cover incoming features from many groups by using a small topographic size,” write the researchers whose project was funded by DAPRA as part of its Cortical Processor program aimed at brain-inspired AI that can recognize complex patterns and adapt to changing environments,” write the researchers.

Shown below is a figure of both conventional convolutional network and the TrueNorth approach.

Fig. 1. (A) Two layers of a convolutional network. Colors (green, purple, blue, orange) designate neurons (individual boxes) belonging to the same group (partitioning the feature dimension) at the same location (partitioning the spatial dimensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board) comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic array. Convolutional network neurons for one group at one topographic location are implemented using neurons on the same TrueNorth core (TrueNorth neuron colors correspond to convolutional network neuron colors in A), with their corresponding filter support region implemented using the core’s inputs, and filter weights implemented using the core’s synaptic array. (C) Neuron dynamics showing that the internal state variable V(t) of a TrueNorth neuron changes in response to positive and negative weighted inputs. Following input integration in each tick, a spike is emitted if V(t) is greater than or equal to the threshold θ=1. V(t) is reset to 0 before input integration in the next tick. (D) Convolutional network filter weights (numbers in black diamonds) implemented using TrueNorth, which supports weights with individually configured on/off state and strength assigned by lookup table. In our scheme, each feature is represented with pairs of neuron copies. Each pair connects to two inputs on the same target core, with the inputs assigned types 1 and 2, which via the look up table assign strengths of +1 or −1 to synapses on the corresponding input lines. By turning on the appropriate synapses, each synapse pair can be used to represent −1, 0, or +1.
Fig. 1.
(A) Two layers of a convolutional network. Colors (green, purple, blue, orange) designate neurons (individual boxes) belonging to the same group (partitioning the feature dimension) at the same location (partitioning the spatial dimensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board) comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic array. Convolutional network neurons for one group at one topographic location are implemented using neurons on the same TrueNorth core (TrueNorth neuron colors correspond to convolutional network neuron colors in A), with their corresponding filter support region implemented using the core’s inputs, and filter weights implemented using the core’s synaptic array.
(C) Neuron dynamics showing that the internal state variable V(t) of a TrueNorth neuron changes in response to positive and negative weighted inputs. Following input integration in each tick, a spike is emitted if V(t) is greater than or equal to the threshold θ=1. V(t) is reset to 0 before input integration in the next tick. (D) Convolutional network filter weights (numbers in black diamonds) implemented using TrueNorth, which supports weights with individually configured on/off state and strength assigned by lookup table. In our scheme, each feature is represented with pairs of neuron copies. Each pair connects to two inputs on the same target core, with the inputs assigned types 1 and 2, which via the look up table assign strengths of +1 or −1 to synapses on the corresponding input lines. By turning on the appropriate synapses, each synapse pair can be used to represent −1, 0, or +1.

In the IEEE article, Modha notes TrueNorth’s general design as an advantage over those of more specialized deep-learning hardware designed to run only convolutional neural networks because it will likely allow the running of multiple types of AI networks on the same chip. He’s quoted saying, “Not only is TrueNorth capable of implementing these convolutional networks, which it was not originally designed for, but it also supports a variety of connectivity patterns (feedback and lateral, as well as feed forward) and can simultaneously implement a wide range of other algorithms.”

In their paper, the authors emphasize that their work demonstrates more generally that “the structural and operational differences between neuromorphic computing and deep learning are not fundamental and points to the richness of neural network constructs and the adaptability of backpropagation. This effort marks an important step toward a new generation of applications based on embedded neural networks.” It’s bet to read the paper in full for details of the work.

Link to Paper: http://www.pnas.org/content/early/2016/09/19/1604850113.full

Link to Jeremy Hsu’s IEEE Spectrum article: http://spectrum.ieee.org/tech-talk/computing/hardware/ibms-braininspired-chip-tested-on-deep-learning

Link to related HPCwire coverage: Think Fast – Is Neuromorphic Computing Set to Leap Forward?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This