IBM Advances Neuromorphic Computing for Deep Learning

By John Russell

September 29, 2016

Deep learning efforts today are run on standard computer hardware using convolutional neural networks. Indeed the approach has proven powerful by pioneers such as Google and Microsoft. In contrast neuromorphic computing, whose spiking neuron architecture more closely mimics human brain function, has generated less enthusiasm in the deep learning community. Now, work by IBM using its TrueNorth chip as a test case may bring deep learning to neuromorphic architectures.

Writing in the Proceedings of the National Academy of Science (PNAS) in August (Convolutional networks for fast, energy-efficient neuromorphic computing), researchers from IBM Research report, “[We] demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, perform inference while preserving the hardware’s underlying energy-efficiency and high throughput.”

The impact could be significant as neuromorphic hardware and software technology have been rapidly advancing on several fronts. IBM researchers ran the datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per watt). They report their approach allowed networks to be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. Basically, the new approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors.

“The new milestone provides a palpable proof of concept that the efficiency of brain-inspired computing can be merged with the effectiveness of deep learning, paving the path towards a new generation of chips and algorithms with even greater efficiency and effectiveness,” said Dharmendra Modha, chief scientist for brain-inspired computing at IBM Research-Almaden, in an interesting article by Jeremy Hsu on the IBM work posted this week on the IEEE Spectrum (IBM’s Brain-Inspired Chip Tested for Deep Learning.)

Fig. 2. Dataset samples. (A) CIFAR10 examples of airplane and automobile. (B) SVHN examples of the digits 4 and 7. (C) GTSRB examples of the German traffic signs for priority road and ahead only. (D) Flickr-Logos32 examples of corporate logos for FedEx and Texaco. (E) VAD example showing voice activity (red box) and no voice activity at 0 dB SNR. (F) TIMIT examples of the phonemes pcl, p, l, ah, z (red box), en, l, and ix.
Fig. 2.
Dataset samples. (A) CIFAR10 examples of airplane and automobile. (B) SVHN examples of the digits 4 and 7. (C) GTSRB examples of the German traffic signs for priority road and ahead only. (D) Flickr-Logos32 examples of corporate logos for FedEx and Texaco. (E) VAD example showing voice activity (red box) and no voice activity at 0 dB SNR. (F) TIMIT examples of the phonemes pcl, p, l, ah, z (red box), en, l, and ix.

Shown here are dataset samples the researcher worked with.

As Hsu points out in the IEEE Spectrum article, “Deep-learning experts have generally viewed spiking neural networks as inefficient – at least, compared with convolutional neural networks – for the purposes of deep learning. Yann LeCun, director of AI research at Facebook and a pioneer in deep learning, previously critiqued IBM’s TrueNorth chip because it primarily supports spiking neural networks. (See IEEE Spectrum’s previous interview with LeCun on deep learning.)

“The IBM TrueNorth design may better support the goals of neuromorphic computing that focus on closely mimicking and understanding biological brains, says Zachary Chase Lipton, a deep-learning researcher in the Artificial Intelligence Group at the University of California, San Diego. By comparison, deep-learning researchers are more interested in getting practical results for AI-powered services and products.”

IBM is trying to widen that perspective. Clearly, understanding brain function better is an important element neuromorphic computing research but so, increasingly, is developing real-world applications. Lawrence Livermore National Laboratory has purchased a True-North-bases system to explore and in Europe the Human Brain Project has opened up its two big machines, SpiNNaker at Manchester University, U.K., and BrainSaleS in Germany to researchers to develop applications and explore neuromorphic computing.

The IBM paper authors describe the traditional deep learning challenge well: “Contemporary convolutional networks typically use high precision (32-bit) neurons and synapses to provide continuous derivatives and support small incremental changes to network state, both formally required for back-propagation-based gradient learning. In comparison, neuromorphic designs can use one-bit spikes to provide event-based computation and communication (consuming energy only when necessary) and can use low-precision synapses to co- locate memory with computation (keeping data movement local and avoiding off-chip memory bottlenecks).”

By introducing two constraints into the learning rule – binary-valued neurons with approximate derivatives and trinary-valued synapses – the researchers say it is possible to adapt backpropagation to create networks directly implementable using energy efficient neuromorphic dynamics.

“For structure, typical convolutional networks place no constraints on filter sizes, whereas neuromorphic systems can take advantage of blockwise connectivity that limits filter sizes, thereby saving energy because weights can now be stored in local on-chip memory within dedicated neural cores. Here, we present a convolutional network structure that naturally maps to the efficient connection primitives used in contemporary neuromorphic systems. We enforce this connectivity constraint by partitioning filters into multiple groups and yet maintain network integration by interspersing layers whose filter support region is able to cover incoming features from many groups by using a small topographic size,” write the researchers whose project was funded by DAPRA as part of its Cortical Processor program aimed at brain-inspired AI that can recognize complex patterns and adapt to changing environments,” write the researchers.

Shown below is a figure of both conventional convolutional network and the TrueNorth approach.

Fig. 1. (A) Two layers of a convolutional network. Colors (green, purple, blue, orange) designate neurons (individual boxes) belonging to the same group (partitioning the feature dimension) at the same location (partitioning the spatial dimensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board) comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic array. Convolutional network neurons for one group at one topographic location are implemented using neurons on the same TrueNorth core (TrueNorth neuron colors correspond to convolutional network neuron colors in A), with their corresponding filter support region implemented using the core’s inputs, and filter weights implemented using the core’s synaptic array. (C) Neuron dynamics showing that the internal state variable V(t) of a TrueNorth neuron changes in response to positive and negative weighted inputs. Following input integration in each tick, a spike is emitted if V(t) is greater than or equal to the threshold θ=1. V(t) is reset to 0 before input integration in the next tick. (D) Convolutional network filter weights (numbers in black diamonds) implemented using TrueNorth, which supports weights with individually configured on/off state and strength assigned by lookup table. In our scheme, each feature is represented with pairs of neuron copies. Each pair connects to two inputs on the same target core, with the inputs assigned types 1 and 2, which via the look up table assign strengths of +1 or −1 to synapses on the corresponding input lines. By turning on the appropriate synapses, each synapse pair can be used to represent −1, 0, or +1.
Fig. 1.
(A) Two layers of a convolutional network. Colors (green, purple, blue, orange) designate neurons (individual boxes) belonging to the same group (partitioning the feature dimension) at the same location (partitioning the spatial dimensions). (B) A TrueNorth chip (shown far right socketed in IBM’s NS1e board) comprises 4,096 cores, each with 256 inputs, 256 neurons, and a 256 × 256 synaptic array. Convolutional network neurons for one group at one topographic location are implemented using neurons on the same TrueNorth core (TrueNorth neuron colors correspond to convolutional network neuron colors in A), with their corresponding filter support region implemented using the core’s inputs, and filter weights implemented using the core’s synaptic array.
(C) Neuron dynamics showing that the internal state variable V(t) of a TrueNorth neuron changes in response to positive and negative weighted inputs. Following input integration in each tick, a spike is emitted if V(t) is greater than or equal to the threshold θ=1. V(t) is reset to 0 before input integration in the next tick. (D) Convolutional network filter weights (numbers in black diamonds) implemented using TrueNorth, which supports weights with individually configured on/off state and strength assigned by lookup table. In our scheme, each feature is represented with pairs of neuron copies. Each pair connects to two inputs on the same target core, with the inputs assigned types 1 and 2, which via the look up table assign strengths of +1 or −1 to synapses on the corresponding input lines. By turning on the appropriate synapses, each synapse pair can be used to represent −1, 0, or +1.

In the IEEE article, Modha notes TrueNorth’s general design as an advantage over those of more specialized deep-learning hardware designed to run only convolutional neural networks because it will likely allow the running of multiple types of AI networks on the same chip. He’s quoted saying, “Not only is TrueNorth capable of implementing these convolutional networks, which it was not originally designed for, but it also supports a variety of connectivity patterns (feedback and lateral, as well as feed forward) and can simultaneously implement a wide range of other algorithms.”

In their paper, the authors emphasize that their work demonstrates more generally that “the structural and operational differences between neuromorphic computing and deep learning are not fundamental and points to the richness of neural network constructs and the adaptability of backpropagation. This effort marks an important step toward a new generation of applications based on embedded neural networks.” It’s bet to read the paper in full for details of the work.

Link to Paper: http://www.pnas.org/content/early/2016/09/19/1604850113.full

Link to Jeremy Hsu’s IEEE Spectrum article: http://spectrum.ieee.org/tech-talk/computing/hardware/ibms-braininspired-chip-tested-on-deep-learning

Link to related HPCwire coverage: Think Fast – Is Neuromorphic Computing Set to Leap Forward?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This