AWS Beats Azure to K80 General Availability

By Tiffany Trader

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon’s G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards.

Nvidia’s Kepler-generation Telsa K80 was launched nearly two years ago and we’ve since seen the debut of the Maxwell and Pascal architectures, yet the K80 is still going strong, owing to its ability to simultaneously serve multiple application areas.

It’s certainly a popular GPU for cloud providers. Microsoft Azure’s K80-based N-Series virtual machines were delayed by some months, but have now been in preview mode since early August. IBM Softlayer and Cirrascale both offer it and the regional Alibaba Cloud in China is using similar Telsa K40 parts.

Clouds are general purpose by nature. To mine efficiencies of scale, cloud providers select their offerings for mass appeal. To that end, the Telsa K80 GPU offers a nice mix of single and double precision floating point and sufficient memory and memory bandwidth to benefit a range of workloads, from modeling and simulation, to CFD, to deep learning and data and video processing.

“The K80 is our workhorse GPU in the Tesla product line,” said Roy Kim, director, Accelerated Data Center Computing at NVIDIA, in an interview with HPCwire. “It has by far the greatest number of shipments in volume in the history of Tesla. It’s proven and it’s in some of the largest datacenters in both HPC and in hyperscale. We’re going to be shipping it for a long time.

“I found it fascinating that Amazon’s announcement covered five use cases: HPC simulation, HPC developers with Matlab, AI and then these other two that you don’t hear as much about, enterprise SQL and cloud for video transcode,” Kim continued. “The K80 will be the perfect GPU to cover all five use cases. It is that general-purpose processor.”

There is an argument to be made that Pascal with its huge number of cores, and mixed-precision capabilities enabling very high single- and half-precision performance (a boon to many machine learning workloads) will be even more flexible across a broad swath of use cases. Cloud services purveyors, however, want to capture the deep learning momentum now and the K80 is proving to be the right GPU for the right price (a premium part to be sure, but not as premium as the Tesla P100s). Plus, there’s a little matter of availability. Nvidia says it is currently filling some massive Pascal orders. “There is interest from the cloud space, but there’s a line; we’re building them as fast as we can,” said Kim.

Many in HPC as well as some of Amazon’s hyperscale clients, like Netflix, have wondered why AWS took so long to embrace a more performant GPU. The preeminent cloud provider has had two years to adopt the K80 and longer for the K40. Amazon likes to tout its HPC cloud chops, but apparently the HPC market wasn’t attractive enough on its own to incentivize the outlay. But add in machine learning, database processing, real-time video processing – plus more enterprise HPC workloads – and suddenly there’s a much larger addressable market at stake.

Addison Snell, CEO of Intersect360 Research agrees. “Artificial intelligence and deep learning are going to be major application growth areas over the next few years, and they will be predominantly run on public cloud resources,” he said. “Whether you look at it as an HPC application or a hyperscale application, the net effect is that it becomes a bigger business for cloud service providers.”

Analyst firm IDC has reported that seven out of eight public cloud implementations by HPC sites are on AWS.

“So the choice in HPC is AWS,” said Steve Conway, research vice president in IDC’s high performance computing group. “The other side of that is only about 7-8 percent of work done in HPC sites is done in public clouds. So it’s far wider than it is deep, and that has to do with the subset of applications that makes sense to run in public clouds. So the majority of applications still make sense to run on premises.

“It’s still embarrassingly parallel work that makes sense to do in the public cloud, they’re architected to run that kind of workload efficiently. The kinds of applications like machine learning and deep learning that really benefit from GPUs, that work is becoming much more popular, so this makes sense. When people are doing big data, most of it is still done on CPUs, but GPU use is increasingly fairly quickly.”

P2 Performance

Moving from the K520 to the K80 raises the ceiling significantly in terms of FLOPS and memory. Card to card, peak single-precision teraflops increases from 4.9 to 8.73. Double-precision floating point is negligible on the K520, while the K80 is spec’d at 2.91 DP teraflops. And even more importantly for most users, GDDR5 memory per GPU slice (which is how AWS bundles these) jumps four-fold, from 4GB to 12GB.

Amazon makes the speedup look even more appealing by comparing instance generations rather than the GPUs. “P2 instances offer seven times the computational capacity for single precision floating point calculations and 60 times more for double precision floating point calculations than the largest G2 instance,” said AWS Matt Garman, vice president, Amazon EC2 in an official statement.

Naturally, these performance enhancements incur a significant cost hike. The largest P2 instance, p2.16xlarge, delivers 16 physical GPUs (eight K80 cards) and will cost you $14.40 per hour (on-demand) and $6.80 per hour (for reserved instance pricing). The largest machine configuration offered on Azure, NC24, tops out at four physical GPUs (two K80 cards), however list pricing is not yet available.

aws-p2-instance-details-1200x

That 16-GPU P2 instance will get you 20 Gbps networking, which is bound to be disappointing for some users with workloads that would benefit from RMDA InfiniBand speeds. Competitor Microsoft Azure has said it will offer RDMA over InfiniBand across its K80 nodes.

Amazon is pairing its K80s with custom Intel Xeon E5-2686 v4 chips, and instances come with either 4, 32 or 64 vCPUs. The Azure NC-Series virtual machines are hooked into the Intel Xeon E5-2690 v3 processor, providing either 6, 12 or 24 cores per machine.

The three K80-backed AWS instances — p2.16xlarge with 16 GPUs, p2.8xlarge with 8 GPUs, and p2.xlarge with 1 GPU — are available now in Amazon’s US East (N. Virginia), US West (Oregon), and EU (Ireland) regions.

Amazon is also announcing the Deep Learning API, which contains all the major machine learning frameworks, including MXNet, Caffe, Theano, TensorFlow, and Torch. The Amazon API along with CUDA drivers and toolkits are available through the Amazon marketplace.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Leading Solution Providers

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This