RENCI/Dell Supercomputer Charts Hurricane Matthew’s Storm Surge

By John Russell

October 6, 2016

Hurricane Matthew, now headed into Florida having already hammered Haiti and other parts of the Caribbean, is a stark reminder of the importance of computer modeling not only in predicting the storm strength and path but also in predicting and plotting the storm surge which is often its most destructive component. Right now, the Hatteras supercomputer (Dell) at Renaissance Computing Institute (RENCI) in North Carolina is doing just that for Hurricane Matthew.

Named after North Carolina’s famous Outer Banks lighthouse, the Hatteras supercomputer is a 150-node M420 Dell cluster (full specs at the end of article) that runs the ADCIRC storm surge model every six hours when a hurricane is active. Visualizations of the models appear on the Coastal Emergency Risks Assessment website. The outputs from these runs are incorporated into guidance information by the National Weather Service, the National Hurricane Center, and agencies such as the U.S. Coast Guard, the U.S. Army Corps of Engineers, FEMA, and local and regional emergency management divisions.

The models are a tool used to help make decisions about evacuations, and where to position supplies and response personnel. In Florida, Governor Rick Scott has urged about 1.5 million Floridians in the storm’s path to evacuate. Hurricane Matthew, whose winds have again reached 140 miles per hour as it nears the Florida coast turning it into a Category 4 storm, has already killed more than 200 people.

The work to apply high-performance computing and data analysis to understanding dangerous storm surges is part of a long-term collaboration involving RENCI, the Coastal Resilience Center at UNC-Chapel Hill, and UNC’s Institute of Marine Sciences. Over the last 10 years, Brian Blanton, a coastal oceanographer and director of RENCI environmental initiatives, has worked closely with Rick Luettich, lead principal investigator of the Coastal Resilience Center and director IMS, and others to enhance and improve the ADCIRC coastal circulation and storm surge model.

matthew-renci-640x437“We model the way the ocean moves and particularly the ocean and coastal areas and so we are trying to always predict that. It moves because of tides, because of rivers that flow into it, it also moves because of the wind and so when we get these severe storms whether they are winter Nor’easters or hurricanes like Matthew, they blow the wind around if you will, in particularly when they blow it up onto shore then it causes flooding and we have what typically refer to as storm surge,” said Leuttich.

Every time the Dell system at RENCI computes another storm surge model for use by the emergency response community, Blanton is busy running a series of at least nine possible storm surge scenarios on the same HPC system. The process is much like ensemble weather forecasting, where meteorologists run a large number of weather models using slightly different initial conditions in order to account for the uncertainty in such a dynamic system.

The model output available on the web for Matthew can resolve the detail of coastal storm surge to a level of less than 200 meters. And the team’s current research could mean that storm surge models next year will provide even more detail and accuracy.  “We are working on doing storm surge predictions the same way that meteorologists develop predictions for rain and wind speeds,” said Blanton. “It will provide high-resolution storm surge probabilities that account for uncertainty in the track and intensity of hurricane forecasts.” Blanton said the research team plans to acquire enough test simulations this year to be able to produce ensemble models regularly for hurricane season 2017.

renci-official-logo1-300x160ADCIRC – a system of computer programs for solving time dependent, free surface circulation and transport problems in two and three dimensions – was developed by Luettich and researchers at the University of Notre Dame. These programs utilize the finite element method in space allowing the use of highly flexible, unstructured grids. The researchers and developers who maintain the software and develop the visual models represent universities on the East and Gulf coasts as well as agencies such as the National Oceanic and Atmospheric Agency, the National Weather Service, the National Science Foundation, and the Department of Homeland Security.

In one sense, storm surge forecasting is lower on the HPC totem pole than weather forecasting in terms of access to necessary resources. The major weather forecasting services often have access to bigger machines, modernized codes, and sometime can be the dominant user of the resource. These agencies use ensemble of modeling – sometimes looking at thousands of models as well as other data sources such as that from hurricane hunter aircraft to “develop with a hand-created forecast.” Even then, as the forecast extends out a couple of days it’s uncertainty grows significantly.

In times of an event such as Hurricane Matthew the National Weather Forecasting Service uses its substantial resources to update its forecast every six hours. Keeping pace is a challenge for the storm surge forecasters. “If it takes us five and a half hours to do a run and process it and get everything displayed and out there for the public to see, then it is pretty much useless. Its relevancy window has left. I typically think two hours is the maximum amount of time we have to stay relevant and I am much happier if we can get results done in an hour,” said Luettich.

Luettich’s team starts with the basic forecast provided by the National Hurricane Center and runs that through its model: “It’s the hurricane center forecast and it’s the first thing we want to go out because that’s our best estimate of what’s likely to occur. The next question is what’s the range of things that could occur. The only way we can address that issue of range [is] using ensembles. At that point we have to do multiple runs to try to bracket and depending on what we have for resources we can do this either heuristically, just picking a couple of storms or a few storms to give us kind of a sensitivity study, or ideally we can get into the dozens or hundreds storms to give us truly a statistically valid population that we can then compute statistics from and whatnot. In a nutshell that’s the challenge,” he said.

A single run on several hundred to one-thousand processors may take hours. “The challenge for us, as the ocean modelers, as storm surge modelers, is to properly account for that uncertainty in the way in which we deliver forecasts of the ocean’s response. So right now we do the forecast which is right smack down the middle of that cone of uncertainty and then we will do a few runs which kind of bracket either the possible track variations over time or changes to the predictive intensity of the storm.”

Hatteras Supercomputer by Dell at RENCI
Hatteras Supercomputer by Dell at RENCI

Perhaps not surprisingly, access to sufficient compute horsepower is a bottleneck. “We are fortunate if we can get enough computer horsepower either at RENCI and RENCI is our go-to-place for in-house HPC but realistically we can get enough processors there to do more than one or two runs each compute cycle. We collaborate with folks at LSU and TACC and other places so we can typically add in a few more runs but we are still only a the phase of being able to do the primary forecast and a few sensitivity runs around it.”

The need for speed, emphasizes Luettich, is critical, however it’s important to note the ADCIRC tools are also used extensively in design and hazard assessment, which are generally not time-constrained projects.

“By far these models are used, [maybe] 100X more often than for active storms, for design purposes. For example a model we developed was used by the Army Corp. to design the hurricane protection systems that is now around New Orleans. [It’s] also being used to design a major levy system (so-called Ike Dike) that might protect the Houston Galveston area in the future. So it is very much a design tool and gets used extensively for that purpose.”

Secondly the models are used to define what the hazards of storm surge are in coastal regions. “FEMA uses it for 100-year flood levels and where those are for insurance purposes,” he noted. Recently the Nuclear Regulatory Commission has been using it to define what the threats are to coastal nuclear power plants. All of that work goes on outside of the context of actual event.

“It’s very HPC intensive. We may end up having to run many, many hundreds or thousands of storms to get a full sweep of the design or the hazard situation that exists. But time is not nearly as big a constraint. If it takes a run one hour or five hours or ten hours to do as long as you can stack up the hundreds or thousands of runs you need and get them done over a reasonable time, a few months or a year or whatever your study length, it’s [acceptable].”

That said, Leuttich and his colleagues are actively pushing to advance ADCIRC on at least three fronts. Leuttich notes the code, though old, is already very parallelizable and already scales well on existing architecture, but not on newer architecture. Moreover, rigid code parallelization isn’t always the best approach. He singled the following three areas of active effort:

  • Parallelization. “In these modeling applications we need very high resolution in these areas where the storm is impacting but in other areas we can use very low resolution. Yet to automate the process in the parallelization, the leading parallelization paradigm middleware that is out there is very challenging. So we have a NSF funded project that is looking into new parallelization strategies that will allow us to optimize our calculations and consequently be much more efficiently and faster.”
  • Modern Hardware. ADCIRC have started looking into manycore chips such as Intel’s newly-released Knights Landing Phi. That’s one area. “It looks like it is going to take some code reengineering to optimize the code for use on that hardware but that’s is something that we are starting to think about at RENCI. In the last month or so, gotten [KNL-based system] that will give us at least the opportunity to test some of software re-engineering we have to do to see how extensive it is and to what extent we can get performance increases.”
  • irods_logo_hdMore Computers. “The third direction is looking for other partners and in fact our colleagues at RENCI have been extremely helpful. One of their fortés is the iRODS systems and ability to move data around between HPC centers, distributed HPC. We wouldn’t want to necessarily distribute a single run among centers at various locations but again thinking back to the ensemble approach if we can farm out X number of runs to different machines at different location and compile the information back efficiently then that may help us considerably, and that may even include a cloud type application.”

Interestingly, the ADCIRC code has not performed well on GPUs. “It is predominantly because of the way the algorithms are written; they are not terribly compatible with GPU acceleration,” said Luettich.

Without doubt, a certain amount of inertia exists in the code, says Luettich, and a massive rewrite to take advantage of the next generation of hardware may be necessary. Funding is always an issue for projects such ADCIRC. Luettich noted, “Think about how much damage is going to result from this Hurricane Matthew. Imagine if you took one percent of that and invested it in computer resources, whether hardware or software, what advances we could make and what the returns in lessened damage in the future would be.”

Hatteras Supercomputer Profile (from RENCI web site)

Deployed in summer 2013 and expanded in early 2014, Hatteras is a 5168-core cluster running CentOS Linux.  Hatteras is not fully MPI interconnected, and is instead segmented into several independent sub-clusters with varying architectures.  Hatteras is capable of concurrently running 9 512-way ensemble members.  Hatteras uses Dell’s densest blade enclosure to allow for maximum core-count within each chassis.

Hatteras’ sub-clusters have the following configurations:

  • Chassis 0-3 (512 interconnected cores per chassis)
    • 32 x Dell M420 quarter-height blade server
      • Two Intel Xeon E5-2450 CPUs (2.1GHz, 8-core)
      • 96GB 1600MHz RAM
      • 50GB SSD for local I/O
    • 40Gb/s Mellanox FDR-10 Interconnect
  • Chassis 4-7 (640 interconnected cores per chassis)
    • 32 x Dell M420 Quarter-Height Blade Server
      • Two Intel Xeon E5-2470v2 CPUs (2.4GHz, 10-core)
      • 96GB 1600MHz RAM
      • 50GB SSD for local I/O
    • 40Gb/s Mellanox FDR-10 Interconnect
  • Hadoop (560 interconnected cores)
    • 30 x Dell R720xd 2U Rack Server
      • Two Intel Xeon E5-2670 processors (16 cores total @ 2.6GHz)
      • 256GB RDIMM RAM @ 1600MHz
      • 36 Terabytes (12 x 3TB) of raw local disk dedicated to the node
      • 146GB RAID-1 volume dedicated for OS
      • 10Gb/s Dedicated Ethernet NAS Connectivity
    • 2 x Dell R820 2U Rack Server (LargeMem)
      • Four Intel Xeon E5-4640v2 processors (40 cores total @ 2.2GHz)
      • 1.5TB LRDIMM RAM @ 1600MHz
      • 9.6 Terabytes (8 x 1.2TB) of raw local disk dedicated to the node
      • 10Gb/s Dedicated Ethernet NAS Connectivity
    • 56Gb/s Mellanox FDR Infiniband Interconnect
    • 40Gb/s Mellanox Ethernet Interconnect

Related Links
ADCRIC website
Coastal Resilience Center Website
Institute of Marine Sciences Website

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire