RENCI/Dell Supercomputer Charts Hurricane Matthew’s Storm Surge

By John Russell

October 6, 2016

Hurricane Matthew, now headed into Florida having already hammered Haiti and other parts of the Caribbean, is a stark reminder of the importance of computer modeling not only in predicting the storm strength and path but also in predicting and plotting the storm surge which is often its most destructive component. Right now, the Hatteras supercomputer (Dell) at Renaissance Computing Institute (RENCI) in North Carolina is doing just that for Hurricane Matthew.

Named after North Carolina’s famous Outer Banks lighthouse, the Hatteras supercomputer is a 150-node M420 Dell cluster (full specs at the end of article) that runs the ADCIRC storm surge model every six hours when a hurricane is active. Visualizations of the models appear on the Coastal Emergency Risks Assessment website. The outputs from these runs are incorporated into guidance information by the National Weather Service, the National Hurricane Center, and agencies such as the U.S. Coast Guard, the U.S. Army Corps of Engineers, FEMA, and local and regional emergency management divisions.

The models are a tool used to help make decisions about evacuations, and where to position supplies and response personnel. In Florida, Governor Rick Scott has urged about 1.5 million Floridians in the storm’s path to evacuate. Hurricane Matthew, whose winds have again reached 140 miles per hour as it nears the Florida coast turning it into a Category 4 storm, has already killed more than 200 people.

The work to apply high-performance computing and data analysis to understanding dangerous storm surges is part of a long-term collaboration involving RENCI, the Coastal Resilience Center at UNC-Chapel Hill, and UNC’s Institute of Marine Sciences. Over the last 10 years, Brian Blanton, a coastal oceanographer and director of RENCI environmental initiatives, has worked closely with Rick Luettich, lead principal investigator of the Coastal Resilience Center and director IMS, and others to enhance and improve the ADCIRC coastal circulation and storm surge model.

matthew-renci-640x437“We model the way the ocean moves and particularly the ocean and coastal areas and so we are trying to always predict that. It moves because of tides, because of rivers that flow into it, it also moves because of the wind and so when we get these severe storms whether they are winter Nor’easters or hurricanes like Matthew, they blow the wind around if you will, in particularly when they blow it up onto shore then it causes flooding and we have what typically refer to as storm surge,” said Leuttich.

Every time the Dell system at RENCI computes another storm surge model for use by the emergency response community, Blanton is busy running a series of at least nine possible storm surge scenarios on the same HPC system. The process is much like ensemble weather forecasting, where meteorologists run a large number of weather models using slightly different initial conditions in order to account for the uncertainty in such a dynamic system.

The model output available on the web for Matthew can resolve the detail of coastal storm surge to a level of less than 200 meters. And the team’s current research could mean that storm surge models next year will provide even more detail and accuracy.  “We are working on doing storm surge predictions the same way that meteorologists develop predictions for rain and wind speeds,” said Blanton. “It will provide high-resolution storm surge probabilities that account for uncertainty in the track and intensity of hurricane forecasts.” Blanton said the research team plans to acquire enough test simulations this year to be able to produce ensemble models regularly for hurricane season 2017.

renci-official-logo1-300x160ADCIRC – a system of computer programs for solving time dependent, free surface circulation and transport problems in two and three dimensions – was developed by Luettich and researchers at the University of Notre Dame. These programs utilize the finite element method in space allowing the use of highly flexible, unstructured grids. The researchers and developers who maintain the software and develop the visual models represent universities on the East and Gulf coasts as well as agencies such as the National Oceanic and Atmospheric Agency, the National Weather Service, the National Science Foundation, and the Department of Homeland Security.

In one sense, storm surge forecasting is lower on the HPC totem pole than weather forecasting in terms of access to necessary resources. The major weather forecasting services often have access to bigger machines, modernized codes, and sometime can be the dominant user of the resource. These agencies use ensemble of modeling – sometimes looking at thousands of models as well as other data sources such as that from hurricane hunter aircraft to “develop with a hand-created forecast.” Even then, as the forecast extends out a couple of days it’s uncertainty grows significantly.

In times of an event such as Hurricane Matthew the National Weather Forecasting Service uses its substantial resources to update its forecast every six hours. Keeping pace is a challenge for the storm surge forecasters. “If it takes us five and a half hours to do a run and process it and get everything displayed and out there for the public to see, then it is pretty much useless. Its relevancy window has left. I typically think two hours is the maximum amount of time we have to stay relevant and I am much happier if we can get results done in an hour,” said Luettich.

Luettich’s team starts with the basic forecast provided by the National Hurricane Center and runs that through its model: “It’s the hurricane center forecast and it’s the first thing we want to go out because that’s our best estimate of what’s likely to occur. The next question is what’s the range of things that could occur. The only way we can address that issue of range [is] using ensembles. At that point we have to do multiple runs to try to bracket and depending on what we have for resources we can do this either heuristically, just picking a couple of storms or a few storms to give us kind of a sensitivity study, or ideally we can get into the dozens or hundreds storms to give us truly a statistically valid population that we can then compute statistics from and whatnot. In a nutshell that’s the challenge,” he said.

A single run on several hundred to one-thousand processors may take hours. “The challenge for us, as the ocean modelers, as storm surge modelers, is to properly account for that uncertainty in the way in which we deliver forecasts of the ocean’s response. So right now we do the forecast which is right smack down the middle of that cone of uncertainty and then we will do a few runs which kind of bracket either the possible track variations over time or changes to the predictive intensity of the storm.”

Hatteras Supercomputer by Dell at RENCI
Hatteras Supercomputer by Dell at RENCI

Perhaps not surprisingly, access to sufficient compute horsepower is a bottleneck. “We are fortunate if we can get enough computer horsepower either at RENCI and RENCI is our go-to-place for in-house HPC but realistically we can get enough processors there to do more than one or two runs each compute cycle. We collaborate with folks at LSU and TACC and other places so we can typically add in a few more runs but we are still only a the phase of being able to do the primary forecast and a few sensitivity runs around it.”

The need for speed, emphasizes Luettich, is critical, however it’s important to note the ADCIRC tools are also used extensively in design and hazard assessment, which are generally not time-constrained projects.

“By far these models are used, [maybe] 100X more often than for active storms, for design purposes. For example a model we developed was used by the Army Corp. to design the hurricane protection systems that is now around New Orleans. [It’s] also being used to design a major levy system (so-called Ike Dike) that might protect the Houston Galveston area in the future. So it is very much a design tool and gets used extensively for that purpose.”

Secondly the models are used to define what the hazards of storm surge are in coastal regions. “FEMA uses it for 100-year flood levels and where those are for insurance purposes,” he noted. Recently the Nuclear Regulatory Commission has been using it to define what the threats are to coastal nuclear power plants. All of that work goes on outside of the context of actual event.

“It’s very HPC intensive. We may end up having to run many, many hundreds or thousands of storms to get a full sweep of the design or the hazard situation that exists. But time is not nearly as big a constraint. If it takes a run one hour or five hours or ten hours to do as long as you can stack up the hundreds or thousands of runs you need and get them done over a reasonable time, a few months or a year or whatever your study length, it’s [acceptable].”

That said, Leuttich and his colleagues are actively pushing to advance ADCIRC on at least three fronts. Leuttich notes the code, though old, is already very parallelizable and already scales well on existing architecture, but not on newer architecture. Moreover, rigid code parallelization isn’t always the best approach. He singled the following three areas of active effort:

  • Parallelization. “In these modeling applications we need very high resolution in these areas where the storm is impacting but in other areas we can use very low resolution. Yet to automate the process in the parallelization, the leading parallelization paradigm middleware that is out there is very challenging. So we have a NSF funded project that is looking into new parallelization strategies that will allow us to optimize our calculations and consequently be much more efficiently and faster.”
  • Modern Hardware. ADCIRC have started looking into manycore chips such as Intel’s newly-released Knights Landing Phi. That’s one area. “It looks like it is going to take some code reengineering to optimize the code for use on that hardware but that’s is something that we are starting to think about at RENCI. In the last month or so, gotten [KNL-based system] that will give us at least the opportunity to test some of software re-engineering we have to do to see how extensive it is and to what extent we can get performance increases.”
  • irods_logo_hdMore Computers. “The third direction is looking for other partners and in fact our colleagues at RENCI have been extremely helpful. One of their fortés is the iRODS systems and ability to move data around between HPC centers, distributed HPC. We wouldn’t want to necessarily distribute a single run among centers at various locations but again thinking back to the ensemble approach if we can farm out X number of runs to different machines at different location and compile the information back efficiently then that may help us considerably, and that may even include a cloud type application.”

Interestingly, the ADCIRC code has not performed well on GPUs. “It is predominantly because of the way the algorithms are written; they are not terribly compatible with GPU acceleration,” said Luettich.

Without doubt, a certain amount of inertia exists in the code, says Luettich, and a massive rewrite to take advantage of the next generation of hardware may be necessary. Funding is always an issue for projects such ADCIRC. Luettich noted, “Think about how much damage is going to result from this Hurricane Matthew. Imagine if you took one percent of that and invested it in computer resources, whether hardware or software, what advances we could make and what the returns in lessened damage in the future would be.”

Hatteras Supercomputer Profile (from RENCI web site)

Deployed in summer 2013 and expanded in early 2014, Hatteras is a 5168-core cluster running CentOS Linux.  Hatteras is not fully MPI interconnected, and is instead segmented into several independent sub-clusters with varying architectures.  Hatteras is capable of concurrently running 9 512-way ensemble members.  Hatteras uses Dell’s densest blade enclosure to allow for maximum core-count within each chassis.

Hatteras’ sub-clusters have the following configurations:

  • Chassis 0-3 (512 interconnected cores per chassis)
    • 32 x Dell M420 quarter-height blade server
      • Two Intel Xeon E5-2450 CPUs (2.1GHz, 8-core)
      • 96GB 1600MHz RAM
      • 50GB SSD for local I/O
    • 40Gb/s Mellanox FDR-10 Interconnect
  • Chassis 4-7 (640 interconnected cores per chassis)
    • 32 x Dell M420 Quarter-Height Blade Server
      • Two Intel Xeon E5-2470v2 CPUs (2.4GHz, 10-core)
      • 96GB 1600MHz RAM
      • 50GB SSD for local I/O
    • 40Gb/s Mellanox FDR-10 Interconnect
  • Hadoop (560 interconnected cores)
    • 30 x Dell R720xd 2U Rack Server
      • Two Intel Xeon E5-2670 processors (16 cores total @ 2.6GHz)
      • 256GB RDIMM RAM @ 1600MHz
      • 36 Terabytes (12 x 3TB) of raw local disk dedicated to the node
      • 146GB RAID-1 volume dedicated for OS
      • 10Gb/s Dedicated Ethernet NAS Connectivity
    • 2 x Dell R820 2U Rack Server (LargeMem)
      • Four Intel Xeon E5-4640v2 processors (40 cores total @ 2.2GHz)
      • 1.5TB LRDIMM RAM @ 1600MHz
      • 9.6 Terabytes (8 x 1.2TB) of raw local disk dedicated to the node
      • 10Gb/s Dedicated Ethernet NAS Connectivity
    • 56Gb/s Mellanox FDR Infiniband Interconnect
    • 40Gb/s Mellanox Ethernet Interconnect

Related Links
ADCRIC website
Coastal Resilience Center Website
Institute of Marine Sciences Website

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This