Gen-Z Consortium Puts New High Performance Interconnect in Motion

By Doug Black

October 12, 2016

Industry powerhouses have joined forces to address an issue that has confounded system architects since the advent of multicore computing, one that has gained in urgency with the rising tide of big data: the need to bring balance between processing power and data access. The Gen-Z Consortium has set out to create an open, high-performance semantic fabric interconnect and protocol that scales from the node to the rack.

Gen-Z brings together 19 companies (ARM, Cray, Dell EMC, HPE, IBM, Mellanox, Micron, Seagate, Xilinx and others) and bills itself as a transparent, non-proprietary standards body that will develop a “flexible, high-performance memory semantic fabric (providing) a peer-to-peer interconnect that easily accesses large volumes of data while lowering costs and avoiding today’s bottlenecks.” The not-for-profit organization said it will operate like other open source entities and will make the Gen-Z standard free of charge.

genz-memory-semantic-fabric-slide

Vowing to enable Gen-Z systems in 2018, the consortium’s mission is to address what it says are obsolete “programmatic and architectural assumptions”: that storage is slow, persistent, and reliable while data in memory is fast but volatile, assumptions the consortium contends are no longer optimal in the face of new storage-class memory technologies, which converge storage and memory attributes. A new approach to data access that takes on the challenges of explosive data growth, real-time application requirements, the emergence of low-latency storage class memory and demand for rack scale resource pools – these are the consortium’s objectives.

Kurtis Bowman, director, server solutions, office of the CTO, at consortium member Dell EMC, said that 12 of the member companies have worked for the past year to develop what he called a “.7- or .8-level spec” on the fabric, “so there’s still opportunity for new members to contribute to the spec, make it stronger,” but enough work has been done “with the spec in proving out that the technology itself is right.”

“We get asked a lot, ‘Why the new bus?’” he said. “It’s because there’s really nothing that today solves all the problems that we think exist. One is that memory is flat or shrinking in the servers that we have today. So the bandwidth per core is shrinking to a point where today we have less bandwidth per core than we did in 2003. The memory capacity per core is shrinking, the I/O per core is shrinking. It really comes down to there’s just not enough pins on the processor to be able to get the requisite amount of memory and I/O that you need.”

He emphasized the need to solve this challenge as real-time workloads are increasingly adopted, “You have to be able to quickly analyze the data coming in, get some insights from that data, because as it takes longer to analyze that data, your time to insights pushes out and makes it less valuable. So we want to make it so it’s easier to get compute and data closer together and allow those to be done” in a standardized way, across CPUs, GPUs, FPGAs and other architectures. “All of them need access to the memory that’s available.”

Gen-Z touts the following benefits:

  • High bandwidth and low latency via a simplified interface based on memory semantics, scalable to 112GT/s and beyond with DRAM-class latencies.
  • Support for advanced workloads by enabling data-centric computing with scalable memory pools and resources for real time analytics and in-memory applications.
  • Software compatibility with no required changes to the operating system while scaling from simple, low cost connectivity to highly capable, rack scale interconnect.

Gartner Group’s Chirag Dekate, research director, HPC, servers, emerging technologies, said the consortium’s focus on data movement has important implications on high-growth segments of the advanced scale computing market, such as data analytics and machine learning, that utilize coprocessors and accelerators.

“These technologies are crucial in delivering the much needed computational boost for the underlying applications,” Dekate said. “These architectures are biased towards extreme compute capability. However, this results in I/O bottlenecks across the stack.”

He said coprocessors and accelerators utilize the PCIe bus to synchronize host and device memories, despite there being roughly three orders of magnitude difference between the FLOPS-rate and the bandwidth of the underlying PCIe bus. “This essentially translates to dramatic inefficiencies in performance, especially in instances where there isn’t sufficient parallelism to hide the data access latencies,” said Dekate. “This problem is only going to get worse as the computational capabilities of core architectures evolve more rapidly than the supporting memory subsystems, resulting in a fundamental mismatch between data movement within a compute node and the floating point rate of modern processors.”

Initiatives like Gen-Z are crucial for addressing the data movement challenges that emerging compute platforms are facing, he said. “The success of Gen-Z will depend on the consortium’s ability to expand and integrate broader scale of processor vendors to be able to have the broadest impact in customer datacenters.”

Gen-Z said it expects to have the core specification, covering the architecture and protocol, finalized in late 2016. Proof systems developed on FPGAs will follow with fully Gen-Z enabled systems on track for mid-2018. Other consortium members include AMD, Cavium Inc., Huawei, IDT, Lenovo, Microsemi, Red Hat, SK Hynix and Western Digital.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire