IDC: Searching for Dark Energy in the HPC Universe

By Bob Sorensen

October 20, 2016

Editor’s Note: In this guest commentary, Bob Sorensen, research vice president in IDC’s High Performance Computing group, argues that high performance computing is undergoing basic changes in how we should think about it and define it. Advanced scale computing was once mostly the domain of government labs and large academic research centers. Today, the HPC universe is expanding, to use Sorensen’s metaphor, and many more forces are at play and becoming visible and must be taken into account. This isn’t a new idea (see IDC: The Changing Face of HPC, HPCwire) but it is one that is increasingly crystallizing and being embraced. No doubt we will hear more at the annual IDC HPC Update Breakfast held at SC16 in November. – John Russell

The latest scientific evidence indicates that the universe is expanding at an accelerating rate and that so-called dark energy is the driver behind this growth. Even though it comprises roughly two-thirds of the universe, not much is known about dark energy because it cannot be directly observed. The same idea of such dark energy in HPC applies. Simply put, the HPC universe is expanding in ways that are not being directly observed using traditional HPC definitions, and that new definitions may be needed to accurately capture this phenomenon.

Potential dark energy in the HPC universe encompasses a number of emerging and distinct elements, but each in its own way adds to the collective technology and market dynamics of the HPC sector. They include:

  • New hardware to support deep learning applications that with their emphasis on high computational capability, large memory capacity, and strong interconnect schemes, can rightly be called HPC systems. Examples here include the NVIDIA DGX-1 supercomputer in a box, the Facebook Big Sur rack, or the Google Tensor Processing Unit. Even Intel is moving into the field with its recent acquisition of Nervana, a cloud-based deep learning provider that will demonstrate next year its custom designed ASIC that includes 32 GB of on-chip storage and six bi-directional high-bandwidth links. IDC projects that global spending on cognitive systems – of which deep learning is an integral component – will reach nearly $31.3 billion in 2019 with a five-year compound annual growth rate (CAGR) of 55%. For perspective, IDC estimates that the total HPC server market that same year will be about $14 billion
  • HPC in the cloud offerings that are increasingly providing HPC capabilities outside the traditional HPC vendor/user relationships, such as what is being done at AWS, Google, and Microsoft Azure. These HPC in the cloud providers are offering both the hardware and software needed to attract traditional HPC users to their services, and many expect that once the pricing models for these services settle down, more and more traditional HPC workloads will be pushed out into a cloud environment. Many see this not as a zero sum game, but as a way to grow the total HPC market. In addition, as many traditional HPC users are looking to cloud-based computation as a way to complement their in-house capabilities, vendors will need to offer seamless application migration between cloud and on-prem hardware or risk finding themselves locked out of the market. Some project that cloud-based HPC could grow to over $10 billion by 2020.
  • New big data applications that are running in non-traditional HPC environments but that use HPC hardware, such as in the finance or cyber security sectors. For example, Cray and Deloitte recently announced the first commercially available supercomputing-based threat analytics service on a subscription basis. Across the board, commercial firms that currently are engaging in traditional enterprise business analytics are increasingly turning to HPCs to address some of their more complex, time sensitive, or data rich problems. Despite this, many of these users likely will not strongly identity with or be strongly identified by the traditional HPC sector as part of the HPC universe. The process whereby these ‘new’ users enter into the HPC universe will be an interesting one to watch as they will bring their own unique experiences, expectations, and requirements into the mix.

As no credible theory can go forward without some notion of identifying validating experiments, it is instructive to look at what is already happening in the sector as seen in the Top 500 HPC list. For example, in the most recent Top 500, there were 138 entries that simply did not fit into the traditional HPC categories. Here is how those sites self-identity as instead:

  • 68 Internet Companies
  • 39 IT Service Providers
  • 14 Telecommunications Companies
  • 12 Hosting Companies
  • 5 Cloud Companies

Although one could argue that many of these HPCs are being used for traditional HPC workloads, it is clear that something interesting is going on in the sector. Does the ability of these systems to qualify for the Top 500 list – a list that does not expressly claim to be a measure of technical HPC computing, but does use a traditional scientific calculation for its performance gatekeeper – mean that they are running scientific workloads? Or is it more likely that increasingly systems that can qualify for the Top 500 are not being used in traditional HPC environments, but instead finding use in a broader range of applications?

Ultimately, this is a case where if it is important to identify the dark energy in HPC, the sector needs to consider what exactly an HPC is. Can systems that run CFD calculations for an automaker, drive real-time decision making for credit card fraud detection, and self-learn to do highly accurate photo image identification all be considered HPC? If one defines HPC to be the embodiment of some of the most advanced developments in hardware and software that enables new scientific discoveries, underwrites innovation in engineering and manufacturing, and creates significant economic return, then the answer is a clear yes. And maybe little else matters.

Perhaps it’s time for the HPC sector to expand its perspective and embrace the dark energy out there that offers significant promise for a renaissance of the HPC sector writ large. It’s either that or get left behind by these new fields that look to be key drivers of HPC-related technologies – as well as a source of financial growth – for the foreseeable future. Are we looking at a missing 68% content like we see at the galactic level? It’s hard to say right now, but it is clear that as time passes these new HPC use cases will only grow more prevalent.

Author Bio:

Bob Sorensen, IDC
Bob Sorensen, IDC

Bob Sorensen, Research Vice President in IDC’s High Performance Computing group, is part of the HPC technical computing team, driving research and consulting efforts in the United States, European, and Asian-Pacific markets for technical servers, supercomputers, clouds, and high performance data analysis. Prior to joining IDC, Mr. Sorensen worked 33 years for the U.S. Federal Government. There he served as a Senior Science and Technology analyst covering global competitive and technical HPC and related advanced computing developments to support senior-level U.S. policy makers, including those in the White House, Department of Defense, and Treasury. Mr. Sorensen holds a bachelor’s degree in electrical engineering from the University of Rochester and a master’s degree in computer science from the George Washington University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire