IDC’s Conway Sets Stage for SC16 Precision Medicine Panel

By John Russell

November 4, 2016

Editor’s Note: Kicking off SC this year is what promises to be a fascinating panel – HPC Impacts on Precision Medicine: Life’s Future–The Next Frontier in Healthcare. In this pre-SC16 Q&A, Steve Conway, research vice president in IDC’s High Performance Computing group and moderator of the panel, sets the stage. HPC, of course, has been transforming life sciences and medicine for nearly two decades. The transformation began in research – sequencing the Human Genome was as much an HPC achievement as it was a triumph of new DNA sequencing instruments. HPC has since moved steadily albeit slowly into the clinic. There are even special purpose supercomputers – Anton – dedicated to life sciences.

What’s emerged is this umbrella notion of precision medicine (PM), the idea that it should be possible to leverage all of our hard-won knowledge, new instrument technology, computational power, and a growing wealth of data spanning individuals to populations to deliver more effective therapies, preventative measures, and even lifestyle enhancing choices. That’s a mouthful. Genomics is the most prominently touted enabler but there are many pieces to the PM puzzle.

We are still at the edge of this sea. Only in recent years, for example, have we come to appreciate the influence the microbiome in each of us has on health. Yet while so much remains to be discovered much has been accomplished. Precision medicine is already starting to transform healthcare; in certain cancers, for example, it has proven decisive. Expectations are high. Think of the many recent and ongoing initiatives such as the Brain Initiative, the Cancer Moonshot, the 1000 Genomes project, the Blue Brain Project, and Human Microbiome Project, to name just a few, all of which depend upon advanced computing. It seems fitting for SC to showcase the importance HPC plays in life sciences research and medicine. – John Russell

HPCwire: The fact that Precision Medicine is the opening panel at SC strongly suggests the growing importance of HPC in making PM and basic life science research possible. Recognizing SC is primarily a technology conference, could you frame the goals of this panel?

Steve Conway: Precision medicine, also called personalized medicine, promises to transform medical practice and healthcare spending by enabling called personalized diagnoses and treatment plans that are custom-tuned for each patient’s physiology, symptoms, medical history, DNA and even lifestyle. What constitutes a good outcome for a broken hand may be different for an office worker and a concert violinist. HPC is already playing a key role in early precision medicine initiatives around the world, by speeding up genome sequencing and by making it possible to quickly sift through millions of archived patient records to identify treatments that have had the best success rates for patients closely resembling the patient under investigation. Biology is fast becoming a digital science and healthcare analytics is one of the fastest-growing new market segments for HPC. Precision medicine is happening at the intersection of biology, medical practice, healthcare economics, and data science. The expert panel at SC’16 will explore this emerging domain from these varied perspectives, with special emphasis on the major role HPC has already started to play.

Warren Kibbe, NCI
Warren Kibbe, NCI

This is a pretty august group:

  • Mitchell Cohen, Director of Surgery, Denver Health Medical Center; Professor, University of Colorado School of Medicine.
  • Martha Head, Senior Director, The Noldor; Acting Head, Insights from Data at GlaxoSmithKline Pharmaceuticals
  • Warren Kibbe, Director, Center for Biomedical Informatics and Information Technology (CBIIT); Chief Information Officer; Acting Deputy Director; National Cancer Institute (NCI)
  • Dimitri Kusnezov, Chief Scientist & Senior Advisor to the Secretary, U.S. Department of Energy, National Nuclear Security Administration
  • Steve Scott, Chief Technology Officer, Cray Inc.

HPCwire: Today much what constitutes PM is big data analytics. Within this context: a) what are the key technologies (compute/architectures, storage, informatics, etc) being used, b) what are the big technology challenges/bottlenecks, and c) where do you expect near-term progress?

Conway: We’ll hear more about this from the experts on the panel, but in general the computer technologies being used today to support precision medicine vary from purpose-built supercomputers such as IBM Watson with its advanced natural language capability to Linux clusters with the usual processors and software. One big challenge is getting access to detailed data on large enough patient populations—some big healthcare companies are investing a lot of money today to acquire more data. Another challenge is speed. An important decision-support goal over time is for the computer to spit out efficacy curves for treatment options in near-real time, while the patient is still sitting across from the doctor. Yet another challenge is the state of the data science—there’s a big need for tools that help users understand the data better, including benchmarks to verify that the results are useful.

HPCwire: How significant is the relative lack of HPC expertise and general computational literacy of most clinical physicians and even life scientists generally? The command line is hardly a friendly place for them. What, if anything, should be done to support them and to raise their computational skill level?

Conway: One of the biggest barriers across all of HPC is the C. P. Snow “two cultures” problem, where in the case of HPC you have computer scientists and domain scientists trying to communicate with each other using different languages. In precision medicine you might have HPC vendors talking about integer or floating point operations per second, while the buyers and users want to hear about cancer detections per second. My own opinion is that in precision medicine, to be successful HPC vendors will need to bend more toward the users than the other way around. I don’t think vendors can expect users to make a big effort to become more proficient in HPC. It will be interesting to hear what the panelists at SC’16 have to say about this.

watson.jpgHPCwire: How should we expect delivery of PM technology to evolve? IBM Watson has received a lot of attention using a cloud-like model while many institutions have on-premise resources. How will the PM delivery ecosystem (HPC infrastructure) evolve?

Conway: Again, you’ll get a fuller discussion of this during the SC panel session, but it seems clear that an effective precision medicine environment will involve both on-premise and cloud resources, presumably integrated in a way that’s transparent to users. You’ll need on-premise resources for brute force computing and cloud resources for things including data research, records transfer and general communication. Most healthcare systems already rely on private clouds for communication among providers and between providers and patients. The brute force computing will be needed for near-real time diagnosis and treatment planning.

HPCwire: What are the two or three examples of the most advanced HPC-based PM systems used today and what makes them distinct?

Conway: Let’s start with IBM Watson. In 2011, Watson stunned a huge American television audience by defeating two human past champions of the Jeopardy! game show in a competition match. The great achievement of this digital brain was its ability to “understand” natural language — specifically, natural language expressed in the interrogatory syntax of the game show. On the heels of this triumph, IBM announced in January 2014 that it would invest $1 billion to advance Watson’s decision-making abilities for major commercial markets, including healthcare. Not much later, in May 2015, IBM said 14 U.S. cancer treatment centers had signed on to receive personalized treatment plans selected by a Watson supercomputer. Watson has contracted since Jeopardy! days “from the size of a master bedroom to three stacked pizza boxes.” Watson will parse the DNA of each patient’s cancer and recommend what it considers the optimal medical treatment, so it’s a powerful decision-support tool for healthcare providers.

The Center for Pediatric Genomic Medicine at Children’s Mercy Hospital, Kansas City, Missouri, has been using supercomputer power to help save the lives of critically ill children. In 2010, the center’s work was named one of Time magazine’s top 10 medical breakthroughs. Roughly 4,100 genetic diseases affect humans, and these are the main causes of infant deaths. But identifying which genetic disease is affecting a critically ill child isn’t easy. For one infant suffering from liver failure, the center used 25 hours of supercomputer time to analyze 120 billion nucleotide sequences and narrowed the problem down to two genetic variants. This allowed the doctors to begin treatment with corticosteroids and immunoglobulin. Thanks to this highly accurate diagnosis of the problem and pinpointed treatment, the baby is alive and well today. For 48% of the cases the center works on today, supercomputer-powered genetic diagnosis points the way toward a more effective treatment.

genomics.jpgThe University of Toronto’s SickKids Centre for Computational Medicine uses a supercomputer operating at 107 trillion calculations per second to predict the minute differences between individual children in order to identify the best treatment for each child under their care.

Researchers at the University of Oslo (Norway) are using a supercomputer to help identify the genes that cause bowel and prostate cancer, two common forms of the disease. There are 4,000 new cases of bowel cancer in Norway every year. Only 6 out of 10 patients survive the first five years. Prostate cancer affects 5,000 Norwegians every year and 9 out of 10 patients survive. The researchers are employing the supercomputer to compare the genetic makeup of healthy cells and cancer cells, paying special attention to complex genes called fusion genes.

The Frédéric Joliot Hospital Department (Orsay, France) is using the powerful supercomputer at the French Alternative Energies and Atomic Energy Commission (CEA) in Bruyères-le-Châtel to improve understanding of how tracers used in PET scans for cancer diagnosis distribute themselves through the body. The goals of this research are to optimize PET scan data analysis and, later on, to personalize the PET scan process for each patient in order to produce better outcomes.

Doctors at Australia’s Victor Chang Cardiac Research Institute are using supercomputer-based gaming technology to identify how individuals’ genetic makeups can affect the severity of their heart rhythm diseases. The researchers built a virtual heart, then applied the recorded heartbeats of patients to the digital heart model in order to spot abnormal electrocardiogram signals. The whole process took 10 days using HPC, instead of the 21 years it would have taken with a contemporary personal computer. In other words, this important work would be impractical without the supercomputer.

HPCwire: To a large degree, mechanistic modeling and simulation – beyond compound structure analysis and docking scoring – hasn’t played a large role in the clinic or basic research. Do you think this will change and what will drive the change?

Anton 1 supercomputer specialized for life sciences modeling and simulation
Anton 1 supercomputer specialized for life sciences modeling and simulation

Conway: Modeling and simulation will continue to play a key role in designing a wide array of medical technology products used in clinical practice, from heart pacemakers to diagnostic imaging tools such as MRI and PET scanners. M&S is also crucial for genome sequencing and precision dosing of pharmaceuticals, both of which are important for precision medicine. I think M&S and advanced analytics will go hand-in-hand in this emerging market.

HPCwire: What haven’t I asked that I should?

Conway: Just that precision medicine will be the next market segment IDC adds to the ones we track in our high performance data analysis, or HPDA, practice. Precision medicine will join fraud and anomaly detection, affinity marketing and business intelligence as new segments that are made up mainly of large commercial firms that have adopted HPC for the first time. We forecast that the whole HPDA server and storage market will exceed $5 billion in 2020. Of that amount, about $3.5 billion will come from existing HPC sites and about $1.6 billion will be added to the HPC market by new commercial buyers. Assuming that precision medicine fulfills its promise over the next decade, it is likely to become the single largest market for HPDA, that is, data-intensive computing using HPC resources.

 

steve-conway-idcSteve Conway, is research vice president in IDC’s High Performance Computing group where he plays a major role in directing and implementing HPC research related to the worldwide market for technical servers and supercomputers. He is a 25-year veteran of the HPC and IT industries. Before joining IDC, Conway was vice president of corporate communications and investor relations for Cray, and before that had stints at SGI and CompuServe Corporation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This