IDC’s Conway Sets Stage for SC16 Precision Medicine Panel

By John Russell

November 4, 2016

Editor’s Note: Kicking off SC this year is what promises to be a fascinating panel – HPC Impacts on Precision Medicine: Life’s Future–The Next Frontier in Healthcare. In this pre-SC16 Q&A, Steve Conway, research vice president in IDC’s High Performance Computing group and moderator of the panel, sets the stage. HPC, of course, has been transforming life sciences and medicine for nearly two decades. The transformation began in research – sequencing the Human Genome was as much an HPC achievement as it was a triumph of new DNA sequencing instruments. HPC has since moved steadily albeit slowly into the clinic. There are even special purpose supercomputers – Anton – dedicated to life sciences.

What’s emerged is this umbrella notion of precision medicine (PM), the idea that it should be possible to leverage all of our hard-won knowledge, new instrument technology, computational power, and a growing wealth of data spanning individuals to populations to deliver more effective therapies, preventative measures, and even lifestyle enhancing choices. That’s a mouthful. Genomics is the most prominently touted enabler but there are many pieces to the PM puzzle.

We are still at the edge of this sea. Only in recent years, for example, have we come to appreciate the influence the microbiome in each of us has on health. Yet while so much remains to be discovered much has been accomplished. Precision medicine is already starting to transform healthcare; in certain cancers, for example, it has proven decisive. Expectations are high. Think of the many recent and ongoing initiatives such as the Brain Initiative, the Cancer Moonshot, the 1000 Genomes project, the Blue Brain Project, and Human Microbiome Project, to name just a few, all of which depend upon advanced computing. It seems fitting for SC to showcase the importance HPC plays in life sciences research and medicine. – John Russell

HPCwire: The fact that Precision Medicine is the opening panel at SC strongly suggests the growing importance of HPC in making PM and basic life science research possible. Recognizing SC is primarily a technology conference, could you frame the goals of this panel?

Steve Conway: Precision medicine, also called personalized medicine, promises to transform medical practice and healthcare spending by enabling called personalized diagnoses and treatment plans that are custom-tuned for each patient’s physiology, symptoms, medical history, DNA and even lifestyle. What constitutes a good outcome for a broken hand may be different for an office worker and a concert violinist. HPC is already playing a key role in early precision medicine initiatives around the world, by speeding up genome sequencing and by making it possible to quickly sift through millions of archived patient records to identify treatments that have had the best success rates for patients closely resembling the patient under investigation. Biology is fast becoming a digital science and healthcare analytics is one of the fastest-growing new market segments for HPC. Precision medicine is happening at the intersection of biology, medical practice, healthcare economics, and data science. The expert panel at SC’16 will explore this emerging domain from these varied perspectives, with special emphasis on the major role HPC has already started to play.

Warren Kibbe, NCI
Warren Kibbe, NCI

This is a pretty august group:

  • Mitchell Cohen, Director of Surgery, Denver Health Medical Center; Professor, University of Colorado School of Medicine.
  • Martha Head, Senior Director, The Noldor; Acting Head, Insights from Data at GlaxoSmithKline Pharmaceuticals
  • Warren Kibbe, Director, Center for Biomedical Informatics and Information Technology (CBIIT); Chief Information Officer; Acting Deputy Director; National Cancer Institute (NCI)
  • Dimitri Kusnezov, Chief Scientist & Senior Advisor to the Secretary, U.S. Department of Energy, National Nuclear Security Administration
  • Steve Scott, Chief Technology Officer, Cray Inc.

HPCwire: Today much what constitutes PM is big data analytics. Within this context: a) what are the key technologies (compute/architectures, storage, informatics, etc) being used, b) what are the big technology challenges/bottlenecks, and c) where do you expect near-term progress?

Conway: We’ll hear more about this from the experts on the panel, but in general the computer technologies being used today to support precision medicine vary from purpose-built supercomputers such as IBM Watson with its advanced natural language capability to Linux clusters with the usual processors and software. One big challenge is getting access to detailed data on large enough patient populations—some big healthcare companies are investing a lot of money today to acquire more data. Another challenge is speed. An important decision-support goal over time is for the computer to spit out efficacy curves for treatment options in near-real time, while the patient is still sitting across from the doctor. Yet another challenge is the state of the data science—there’s a big need for tools that help users understand the data better, including benchmarks to verify that the results are useful.

HPCwire: How significant is the relative lack of HPC expertise and general computational literacy of most clinical physicians and even life scientists generally? The command line is hardly a friendly place for them. What, if anything, should be done to support them and to raise their computational skill level?

Conway: One of the biggest barriers across all of HPC is the C. P. Snow “two cultures” problem, where in the case of HPC you have computer scientists and domain scientists trying to communicate with each other using different languages. In precision medicine you might have HPC vendors talking about integer or floating point operations per second, while the buyers and users want to hear about cancer detections per second. My own opinion is that in precision medicine, to be successful HPC vendors will need to bend more toward the users than the other way around. I don’t think vendors can expect users to make a big effort to become more proficient in HPC. It will be interesting to hear what the panelists at SC’16 have to say about this.

watson.jpgHPCwire: How should we expect delivery of PM technology to evolve? IBM Watson has received a lot of attention using a cloud-like model while many institutions have on-premise resources. How will the PM delivery ecosystem (HPC infrastructure) evolve?

Conway: Again, you’ll get a fuller discussion of this during the SC panel session, but it seems clear that an effective precision medicine environment will involve both on-premise and cloud resources, presumably integrated in a way that’s transparent to users. You’ll need on-premise resources for brute force computing and cloud resources for things including data research, records transfer and general communication. Most healthcare systems already rely on private clouds for communication among providers and between providers and patients. The brute force computing will be needed for near-real time diagnosis and treatment planning.

HPCwire: What are the two or three examples of the most advanced HPC-based PM systems used today and what makes them distinct?

Conway: Let’s start with IBM Watson. In 2011, Watson stunned a huge American television audience by defeating two human past champions of the Jeopardy! game show in a competition match. The great achievement of this digital brain was its ability to “understand” natural language — specifically, natural language expressed in the interrogatory syntax of the game show. On the heels of this triumph, IBM announced in January 2014 that it would invest $1 billion to advance Watson’s decision-making abilities for major commercial markets, including healthcare. Not much later, in May 2015, IBM said 14 U.S. cancer treatment centers had signed on to receive personalized treatment plans selected by a Watson supercomputer. Watson has contracted since Jeopardy! days “from the size of a master bedroom to three stacked pizza boxes.” Watson will parse the DNA of each patient’s cancer and recommend what it considers the optimal medical treatment, so it’s a powerful decision-support tool for healthcare providers.

The Center for Pediatric Genomic Medicine at Children’s Mercy Hospital, Kansas City, Missouri, has been using supercomputer power to help save the lives of critically ill children. In 2010, the center’s work was named one of Time magazine’s top 10 medical breakthroughs. Roughly 4,100 genetic diseases affect humans, and these are the main causes of infant deaths. But identifying which genetic disease is affecting a critically ill child isn’t easy. For one infant suffering from liver failure, the center used 25 hours of supercomputer time to analyze 120 billion nucleotide sequences and narrowed the problem down to two genetic variants. This allowed the doctors to begin treatment with corticosteroids and immunoglobulin. Thanks to this highly accurate diagnosis of the problem and pinpointed treatment, the baby is alive and well today. For 48% of the cases the center works on today, supercomputer-powered genetic diagnosis points the way toward a more effective treatment.

genomics.jpgThe University of Toronto’s SickKids Centre for Computational Medicine uses a supercomputer operating at 107 trillion calculations per second to predict the minute differences between individual children in order to identify the best treatment for each child under their care.

Researchers at the University of Oslo (Norway) are using a supercomputer to help identify the genes that cause bowel and prostate cancer, two common forms of the disease. There are 4,000 new cases of bowel cancer in Norway every year. Only 6 out of 10 patients survive the first five years. Prostate cancer affects 5,000 Norwegians every year and 9 out of 10 patients survive. The researchers are employing the supercomputer to compare the genetic makeup of healthy cells and cancer cells, paying special attention to complex genes called fusion genes.

The Frédéric Joliot Hospital Department (Orsay, France) is using the powerful supercomputer at the French Alternative Energies and Atomic Energy Commission (CEA) in Bruyères-le-Châtel to improve understanding of how tracers used in PET scans for cancer diagnosis distribute themselves through the body. The goals of this research are to optimize PET scan data analysis and, later on, to personalize the PET scan process for each patient in order to produce better outcomes.

Doctors at Australia’s Victor Chang Cardiac Research Institute are using supercomputer-based gaming technology to identify how individuals’ genetic makeups can affect the severity of their heart rhythm diseases. The researchers built a virtual heart, then applied the recorded heartbeats of patients to the digital heart model in order to spot abnormal electrocardiogram signals. The whole process took 10 days using HPC, instead of the 21 years it would have taken with a contemporary personal computer. In other words, this important work would be impractical without the supercomputer.

HPCwire: To a large degree, mechanistic modeling and simulation – beyond compound structure analysis and docking scoring – hasn’t played a large role in the clinic or basic research. Do you think this will change and what will drive the change?

Anton 1 supercomputer specialized for life sciences modeling and simulation
Anton 1 supercomputer specialized for life sciences modeling and simulation

Conway: Modeling and simulation will continue to play a key role in designing a wide array of medical technology products used in clinical practice, from heart pacemakers to diagnostic imaging tools such as MRI and PET scanners. M&S is also crucial for genome sequencing and precision dosing of pharmaceuticals, both of which are important for precision medicine. I think M&S and advanced analytics will go hand-in-hand in this emerging market.

HPCwire: What haven’t I asked that I should?

Conway: Just that precision medicine will be the next market segment IDC adds to the ones we track in our high performance data analysis, or HPDA, practice. Precision medicine will join fraud and anomaly detection, affinity marketing and business intelligence as new segments that are made up mainly of large commercial firms that have adopted HPC for the first time. We forecast that the whole HPDA server and storage market will exceed $5 billion in 2020. Of that amount, about $3.5 billion will come from existing HPC sites and about $1.6 billion will be added to the HPC market by new commercial buyers. Assuming that precision medicine fulfills its promise over the next decade, it is likely to become the single largest market for HPDA, that is, data-intensive computing using HPC resources.

 

steve-conway-idcSteve Conway, is research vice president in IDC’s High Performance Computing group where he plays a major role in directing and implementing HPC research related to the worldwide market for technical servers and supercomputers. He is a 25-year veteran of the HPC and IT industries. Before joining IDC, Conway was vice president of corporate communications and investor relations for Cray, and before that had stints at SGI and CompuServe Corporation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Summit Achieves 445 Petaflops on New HPL-AI Benchmark

June 19, 2019

Summit -- the world's top-ranking supercomputer -- has been used to test-drive a new AI-targeted Linpack benchmark, called HPL-AI. Traditionally, supercomputer performance is measured using the High-Performance Linpac Read more…

By Oliver Peckham

By the Numbers: For the HPC Industry, These Are the Good Old Days

June 18, 2019

For technology vendors in HPC and HPC-related markets driven by increased demand for AI, enterprise and exascale solutions, this is the best of times – with better times likely in the offing. HPC analyst firm Hyperion Research took the occasion of its semi-annual HPC market update breakfast today in Frankfurt... Read more…

By Doug Black

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Avoid AI Redo’s by Starting with the Right Infrastructure

Do you know if you have the right infrastructure for AI? Many organizations don’t have it. In a recent IDC survey, “77.1% of respondents say they ran into one or more limitations with their AI infrastructure on-premise and 90.3% ran into compute limitations in the cloud.” Read more…

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Summit Achieves 445 Petaflops on New HPL-AI Benchmark

June 19, 2019

Summit -- the world's top-ranking supercomputer -- has been used to test-drive a new AI-targeted Linpack benchmark, called HPL-AI. Traditionally, supercomput Read more…

By Oliver Peckham

By the Numbers: For the HPC Industry, These Are the Good Old Days

June 18, 2019

For technology vendors in HPC and HPC-related markets driven by increased demand for AI, enterprise and exascale solutions, this is the best of times – with better times likely in the offing. HPC analyst firm Hyperion Research took the occasion of its semi-annual HPC market update breakfast today in Frankfurt... Read more…

By Doug Black

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This