IDC’s Conway Sets Stage for SC16 Precision Medicine Panel

By John Russell

November 4, 2016

Editor’s Note: Kicking off SC this year is what promises to be a fascinating panel – HPC Impacts on Precision Medicine: Life’s Future–The Next Frontier in Healthcare. In this pre-SC16 Q&A, Steve Conway, research vice president in IDC’s High Performance Computing group and moderator of the panel, sets the stage. HPC, of course, has been transforming life sciences and medicine for nearly two decades. The transformation began in research – sequencing the Human Genome was as much an HPC achievement as it was a triumph of new DNA sequencing instruments. HPC has since moved steadily albeit slowly into the clinic. There are even special purpose supercomputers – Anton – dedicated to life sciences.

What’s emerged is this umbrella notion of precision medicine (PM), the idea that it should be possible to leverage all of our hard-won knowledge, new instrument technology, computational power, and a growing wealth of data spanning individuals to populations to deliver more effective therapies, preventative measures, and even lifestyle enhancing choices. That’s a mouthful. Genomics is the most prominently touted enabler but there are many pieces to the PM puzzle.

We are still at the edge of this sea. Only in recent years, for example, have we come to appreciate the influence the microbiome in each of us has on health. Yet while so much remains to be discovered much has been accomplished. Precision medicine is already starting to transform healthcare; in certain cancers, for example, it has proven decisive. Expectations are high. Think of the many recent and ongoing initiatives such as the Brain Initiative, the Cancer Moonshot, the 1000 Genomes project, the Blue Brain Project, and Human Microbiome Project, to name just a few, all of which depend upon advanced computing. It seems fitting for SC to showcase the importance HPC plays in life sciences research and medicine. – John Russell

HPCwire: The fact that Precision Medicine is the opening panel at SC strongly suggests the growing importance of HPC in making PM and basic life science research possible. Recognizing SC is primarily a technology conference, could you frame the goals of this panel?

Steve Conway: Precision medicine, also called personalized medicine, promises to transform medical practice and healthcare spending by enabling called personalized diagnoses and treatment plans that are custom-tuned for each patient’s physiology, symptoms, medical history, DNA and even lifestyle. What constitutes a good outcome for a broken hand may be different for an office worker and a concert violinist. HPC is already playing a key role in early precision medicine initiatives around the world, by speeding up genome sequencing and by making it possible to quickly sift through millions of archived patient records to identify treatments that have had the best success rates for patients closely resembling the patient under investigation. Biology is fast becoming a digital science and healthcare analytics is one of the fastest-growing new market segments for HPC. Precision medicine is happening at the intersection of biology, medical practice, healthcare economics, and data science. The expert panel at SC’16 will explore this emerging domain from these varied perspectives, with special emphasis on the major role HPC has already started to play.

Warren Kibbe, NCI
Warren Kibbe, NCI

This is a pretty august group:

  • Mitchell Cohen, Director of Surgery, Denver Health Medical Center; Professor, University of Colorado School of Medicine.
  • Martha Head, Senior Director, The Noldor; Acting Head, Insights from Data at GlaxoSmithKline Pharmaceuticals
  • Warren Kibbe, Director, Center for Biomedical Informatics and Information Technology (CBIIT); Chief Information Officer; Acting Deputy Director; National Cancer Institute (NCI)
  • Dimitri Kusnezov, Chief Scientist & Senior Advisor to the Secretary, U.S. Department of Energy, National Nuclear Security Administration
  • Steve Scott, Chief Technology Officer, Cray Inc.

HPCwire: Today much what constitutes PM is big data analytics. Within this context: a) what are the key technologies (compute/architectures, storage, informatics, etc) being used, b) what are the big technology challenges/bottlenecks, and c) where do you expect near-term progress?

Conway: We’ll hear more about this from the experts on the panel, but in general the computer technologies being used today to support precision medicine vary from purpose-built supercomputers such as IBM Watson with its advanced natural language capability to Linux clusters with the usual processors and software. One big challenge is getting access to detailed data on large enough patient populations—some big healthcare companies are investing a lot of money today to acquire more data. Another challenge is speed. An important decision-support goal over time is for the computer to spit out efficacy curves for treatment options in near-real time, while the patient is still sitting across from the doctor. Yet another challenge is the state of the data science—there’s a big need for tools that help users understand the data better, including benchmarks to verify that the results are useful.

HPCwire: How significant is the relative lack of HPC expertise and general computational literacy of most clinical physicians and even life scientists generally? The command line is hardly a friendly place for them. What, if anything, should be done to support them and to raise their computational skill level?

Conway: One of the biggest barriers across all of HPC is the C. P. Snow “two cultures” problem, where in the case of HPC you have computer scientists and domain scientists trying to communicate with each other using different languages. In precision medicine you might have HPC vendors talking about integer or floating point operations per second, while the buyers and users want to hear about cancer detections per second. My own opinion is that in precision medicine, to be successful HPC vendors will need to bend more toward the users than the other way around. I don’t think vendors can expect users to make a big effort to become more proficient in HPC. It will be interesting to hear what the panelists at SC’16 have to say about this.

watson.jpgHPCwire: How should we expect delivery of PM technology to evolve? IBM Watson has received a lot of attention using a cloud-like model while many institutions have on-premise resources. How will the PM delivery ecosystem (HPC infrastructure) evolve?

Conway: Again, you’ll get a fuller discussion of this during the SC panel session, but it seems clear that an effective precision medicine environment will involve both on-premise and cloud resources, presumably integrated in a way that’s transparent to users. You’ll need on-premise resources for brute force computing and cloud resources for things including data research, records transfer and general communication. Most healthcare systems already rely on private clouds for communication among providers and between providers and patients. The brute force computing will be needed for near-real time diagnosis and treatment planning.

HPCwire: What are the two or three examples of the most advanced HPC-based PM systems used today and what makes them distinct?

Conway: Let’s start with IBM Watson. In 2011, Watson stunned a huge American television audience by defeating two human past champions of the Jeopardy! game show in a competition match. The great achievement of this digital brain was its ability to “understand” natural language — specifically, natural language expressed in the interrogatory syntax of the game show. On the heels of this triumph, IBM announced in January 2014 that it would invest $1 billion to advance Watson’s decision-making abilities for major commercial markets, including healthcare. Not much later, in May 2015, IBM said 14 U.S. cancer treatment centers had signed on to receive personalized treatment plans selected by a Watson supercomputer. Watson has contracted since Jeopardy! days “from the size of a master bedroom to three stacked pizza boxes.” Watson will parse the DNA of each patient’s cancer and recommend what it considers the optimal medical treatment, so it’s a powerful decision-support tool for healthcare providers.

The Center for Pediatric Genomic Medicine at Children’s Mercy Hospital, Kansas City, Missouri, has been using supercomputer power to help save the lives of critically ill children. In 2010, the center’s work was named one of Time magazine’s top 10 medical breakthroughs. Roughly 4,100 genetic diseases affect humans, and these are the main causes of infant deaths. But identifying which genetic disease is affecting a critically ill child isn’t easy. For one infant suffering from liver failure, the center used 25 hours of supercomputer time to analyze 120 billion nucleotide sequences and narrowed the problem down to two genetic variants. This allowed the doctors to begin treatment with corticosteroids and immunoglobulin. Thanks to this highly accurate diagnosis of the problem and pinpointed treatment, the baby is alive and well today. For 48% of the cases the center works on today, supercomputer-powered genetic diagnosis points the way toward a more effective treatment.

genomics.jpgThe University of Toronto’s SickKids Centre for Computational Medicine uses a supercomputer operating at 107 trillion calculations per second to predict the minute differences between individual children in order to identify the best treatment for each child under their care.

Researchers at the University of Oslo (Norway) are using a supercomputer to help identify the genes that cause bowel and prostate cancer, two common forms of the disease. There are 4,000 new cases of bowel cancer in Norway every year. Only 6 out of 10 patients survive the first five years. Prostate cancer affects 5,000 Norwegians every year and 9 out of 10 patients survive. The researchers are employing the supercomputer to compare the genetic makeup of healthy cells and cancer cells, paying special attention to complex genes called fusion genes.

The Frédéric Joliot Hospital Department (Orsay, France) is using the powerful supercomputer at the French Alternative Energies and Atomic Energy Commission (CEA) in Bruyères-le-Châtel to improve understanding of how tracers used in PET scans for cancer diagnosis distribute themselves through the body. The goals of this research are to optimize PET scan data analysis and, later on, to personalize the PET scan process for each patient in order to produce better outcomes.

Doctors at Australia’s Victor Chang Cardiac Research Institute are using supercomputer-based gaming technology to identify how individuals’ genetic makeups can affect the severity of their heart rhythm diseases. The researchers built a virtual heart, then applied the recorded heartbeats of patients to the digital heart model in order to spot abnormal electrocardiogram signals. The whole process took 10 days using HPC, instead of the 21 years it would have taken with a contemporary personal computer. In other words, this important work would be impractical without the supercomputer.

HPCwire: To a large degree, mechanistic modeling and simulation – beyond compound structure analysis and docking scoring – hasn’t played a large role in the clinic or basic research. Do you think this will change and what will drive the change?

Anton 1 supercomputer specialized for life sciences modeling and simulation
Anton 1 supercomputer specialized for life sciences modeling and simulation

Conway: Modeling and simulation will continue to play a key role in designing a wide array of medical technology products used in clinical practice, from heart pacemakers to diagnostic imaging tools such as MRI and PET scanners. M&S is also crucial for genome sequencing and precision dosing of pharmaceuticals, both of which are important for precision medicine. I think M&S and advanced analytics will go hand-in-hand in this emerging market.

HPCwire: What haven’t I asked that I should?

Conway: Just that precision medicine will be the next market segment IDC adds to the ones we track in our high performance data analysis, or HPDA, practice. Precision medicine will join fraud and anomaly detection, affinity marketing and business intelligence as new segments that are made up mainly of large commercial firms that have adopted HPC for the first time. We forecast that the whole HPDA server and storage market will exceed $5 billion in 2020. Of that amount, about $3.5 billion will come from existing HPC sites and about $1.6 billion will be added to the HPC market by new commercial buyers. Assuming that precision medicine fulfills its promise over the next decade, it is likely to become the single largest market for HPDA, that is, data-intensive computing using HPC resources.

 

steve-conway-idcSteve Conway, is research vice president in IDC’s High Performance Computing group where he plays a major role in directing and implementing HPC research related to the worldwide market for technical servers and supercomputers. He is a 25-year veteran of the HPC and IT industries. Before joining IDC, Conway was vice president of corporate communications and investor relations for Cray, and before that had stints at SGI and CompuServe Corporation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire