Intel Collaborates with CERN to Support Upgraded LHC Experiments

By Sean Thielen

November 4, 2016

Editor’s note: In this contributed feature, Sean Thielen details the technical collaboration between CERN and Intel in preparation for the center’s next major upgrade, scheduled to commence in late 2018. The joint team has deployed a two-socket Xeon-FPGA (Stratix V) proof-of-concept machine that makes use of a hybrid package design and will soon be testing a newer implementation that will leverage the Arria 10 FPGA and a faster interconnect.

Much of the media attention given to the particle accelerator experiments that happen at the European Organization for Nuclear Research, known as CERN, is focused on the Large Hadron Collider (LHC). It’s no surprise, given the LHC is the world’s largest, most complex machine, unravelling some of the toughest scientific problems by accelerating particles (protons or heavy ions) and making them collide in a gigantic 27-kilometer ring. But the work that happens immediately after particles collide in the LHC is not only critical to science, it’s also quite interesting and important from a computing and data processing perspective. After all, the creation of particles or results in the LHC is only significant if scientists can quickly isolate them from millions of inconsequential signals for further study. That means ongoing advancements in trigger and data acquisition systems are essential to fully reaping the rich potential of the LHC. And, as you can imagine, the networking and computing challenges are extreme in nearly every dimension.

Historically, CERN’s trigger and data acquisition systems have relied heavily on custom technology. For the next upgrade cycle scheduled to start around the end of 2018, however, CERN engineers and scientists were aware that the scalability limitations and costs of their custom solutions could start to limit progress. This led to a new collaborative project with Intel, through CERN openlab, focused on exploring the feasibility of complementing one of the LHC’s detectors with off-the-shelf data acquisition, data movement, and data filtering technology from Intel, including an FPGA platform. If the proof of concept is successful, it could have a significant impact on the future design and efficiency of trigger systems, including the remaining LHC detectors and other scientific instruments.

The Large Hadron Collider tunnel is located 100 meters underground on the Franco-Swiss border, near Geneva. Source: CERN.
The Large Hadron Collider tunnel is located 100 meters underground on the Franco-Swiss border, near Geneva. Source: CERN

Preparing for enormous data growth

Simply phrased, the LHC fires high-energy particle beams at each other in a 27-kilometer ring. The detectors on the LHC include tracking devices that plot the trajectory of particles following collisions, as well as calorimeters that measure their energy, which helps to narrow down their identity. Niko Neufeld, a deputy project leader at CERN who works on the LHCb experiment, likens the computing challenges for the LHC experiments to solving millions of small puzzles involving up to a billion proton-proton collisions every second to retain the most interesting ones for deeper analysis.

Given the task at hand, the near-detector “online” computing challenges at CERN have always been extreme. And when CERN upgrades the LHC and detectors from late 2018 to early 2021 as part of its regular upgrade cycle, the data rates running through the various systems will jump significantly. Neufeld provides perspective on the jump: “Network scaling needs have really grown. For example, the largest networks we currently run at CERN have total bandwidth of around 800 gigabits per second. Following the upgrade work, our networks will need to carry between 40 and 50 terabits of data per second. If you compare that to a Google data center, it may not sound impressive, but for a scientific instrument it’s a huge step in terms of bandwidth.” Neufeld said that the computing challenges have also grown quite complex. “We cannot simply scale up computing by a factor of 100 because we have whatever Moore’s law gives us… We may be able to grow our computing farms by a factor of 1 or 2, but not much more. The rest has to come from more clever processing models,” he added.

The Compact Muon Solenoid (CMS) is one of two large general-purpose detectors on the LHC. The image above captures a candidate proton-proton event as a part of the CMS search for the Higgs boson. Source: CERN
The Compact Muon Solenoid (CMS) is one of two large general-purpose detectors on the LHC. The image above captures a candidate proton-proton event as a part of the CMS search for the Higgs boson. Source: CERN

According to Neufeld, the detector teams face a host of challenges in preparing for the data-rate jump. Neufeld said that the customized trigger (hardware and software) on the front-end of the existing detector system had a long and expensive refresh cycle. “The engineering resources for ASICs [application-specific integrated circuits] and the FPGAs [Field Programmable Gate Arrays] in high energy physics are limited compared to industry, and the tight integration with the detectors makes upgrades outside of our major maintenance periods impractical,” Neufeld explained. “We thought that moving to a more software-centered approach using off-the-shelf technology could greatly reduce these limitations and expand the developer base that is available in our community. Physicists are usually knowledgeable in some programming language, however, HDL [hardware description language] is a different challenge with a very long and steep learning curve.”

Olof Bärring, a deputy group leader of computing facilities at CERN, added that cost and energy considerations were also an important part of the equation. The lab needs to continue addressing greater computing, data moving and storage challenges with a more or less flat budget and within the datacenter’s existing energy envelope.

Exploring options for three critical challenges

In 2014, the former CTO of CERN openlab, Sverre Jarp, invited Intel’s Karl Solchenbach, director Exascale Labs Europe, and Steve Pawlowski, former vice president of advanced computing solutions at Intel, to discuss CERN’s technical challenges with near-detector online computing to see if any Intel technology might be useful in addressing them. During the meeting, Neufeld presented three main challenges, and the participants worked together to map technologies to the challenges.

Challenge one: real-time or near-real-time data-processing with very short (order of 10 microseconds) latencies

The Intel team considered an Intel Xeon processor and Altera Stratix V FPGA integration along with another spatial architecture, and ended up recommending the Intel Xeon processor/FPGA configuration. Neufeld says that the reasoning was that the Intel Xeon processor/FPGA configuration should allow LHC experiments to potentially replace part, and in some cases all, of the custom electronics used in the first step of online data filtering. “That meant we would be able to use off-the-shelf hardware programmed using ‘high-level’ general purpose languages instead of HDLs, which was an important step for us,” he explained.

Challenge two: very high throughput local area networks

For data transport, Intel recommended investigating the potential of Intel Omni-Path Architecture (Intel OPA) as an alternative to deep-buffer Ethernet switching. Neufeld said the main driver for considering Intel OPA over traditional approaches was cost. “It is certainly technically possible to build the network in a more traditional way, but it has become prohibitively expensive, given our budget,” he explained.

Challenge three: the need of massive data-processing for data-reduction

For the filtering of detector data in software, the new Intel Xeon Phi processor was an attractive potential solution, given that the filtering process itself is quite parallel and individual collisions in the LHC are statistically independent.

Not your average POC

Once the CERN and Intel teams agreed that the identified off-the-shelf solutions for each challenge had potential, the hard work of proving the viability of each solution in the next-generation data acquisition environment needed to begin in earnest. In 2015, CERN and Intel decided to expand their existing collaboration through CERN openlab and signed an agreement for a joint three-year project called the High Throughput Computing Collaboration (HTCC). As of writing, the HTCC project has reached the halfway point and the core team, which includes seven CERN scientists and one Intel engineer on site, has made progress in each key challenge area.

The main CERN data center. The 110,000 processor cores and 10,000 servers hosted in its three rooms run 24/7. Source: CERN
The main CERN datacenter. The 110,000 processor cores and 10,000 servers hosted in its three rooms run 24/7. Source: CERN

Networking milestones

In the networking area, Neufeld said a big part of the challenge is simply getting access to a system big enough to test software. “To properly prepare our software, we need access to complete supercomputers. Fortunately, Intel can provide access to clusters that are up to the job,” he explained. Neufeld said that the team recently had an important success while running its software on an Intel OPA cluster with more than 500 nodes. “We have already been able to achieve a full-duplex, high-throughput transit of 70 terabits per second of data flying through the cluster, so that’s already half of what we need by the time of the upgrades.”

FPGA-related milestones

When CERN updates the LHC and the experiments from late 2018 to early 2021, its detectors will support trigger-free readouts. The LHC generates up to around 1 billion collisions per second in the experiments, and the goal is to read them all. Moving forward, a flexible software-based trigger system running in a large (up to 4000 nodes) computing farm will select the interesting collisions. In the meantime, CERN is investigating which technology options are the best fit for accelerating its algorithms. For its initial FPGA proof of concept, the HTCC team deployed a two-socket Intel Xeon processor/FPGA machine, which included the following hardware connected by the Intel QuickPath Interconnect:

  • Intel Xeon CPU E5-2680 v2
  • Altera Stratix V GX A7 FPGA with 234,720 adaptive logic modules (ALMs)

The team is particularly interested in the potential compute and power efficiency gains that are possible with using OpenCL in a combined CPU and FPGA system. With respect to the FPGA platform testing, Neufeld said that the team dealt with host of technical challenges because it wanted to do a meaningful comparison of OpenCL and to get a sense of the costs using a high-level framework. “Just for illustrative purposes, it took us two weeks to set up a new kernel using OpenCL compared to three months to complete an equivalent Verilog implementation, and we had a very skilled engineer on that job,” explained Neufeld. “In the end, I think it was a good investment because we needed to prove to the electronic engineers that the new technology actually provided a less painful way to get the results we need.”

cherenkov-angle-reconstruction-intel-cern-429x
Cherenkov angle reconstruction is used for particle identification in the detectors. Based on initial tests the Xeon/FPGA machine shows promise for processing greater numbers of photons after the LHC upgrade. Source: CERN

Following a series of test cases, such as sorting and calculating the Mandlebrot fractal, to understand the potential of the Xeon/FPGA system, the HTCC team developed an FPGA fine-tuned for the rigors of RICH (ring-imaging Cherenkov) reconstruction. Only then did it begin doing LHC-specific workload analysis.

In coming months, the HTCC team will also be testing a newer system that is built using a combined Intel Xeon CPU and FPGA in a single package. It will include the new high-performance Arria 10 FPGA from Altera as well as a faster interconnect of the CPU and FPGA.

Intel Xeon Phi processor milestones

Neufeld said that testing of the Intel Xeon Phi processor platform will be a major focus of the HTCC team for the next year or so. He noted that like everyone else, the team needs to figure out how to adapt well to the new architecture and different level of parallelism. To achieve this the HTCC team has been working with Intel engineers on benchmarking and understanding the different algorithms’ implementations using Intel analysis tools, such as Intel VTune Amplifier XE and Intel Advisor XE, as well as different performance models, such as the roofline model.

“In addition to the inclusion of bootable sockets, in-package memory and high main-memory bandwidth, what is particularly interesting with Intel Xeon Phi processors is the integrated fabric and its potential to quickly distribute workloads to where they fit best. We will test both data movement aspects on the Intel Xeon Phi processor as well as the distribution of the algorithms between the Intel Xeon and Intel Xeon Phi processor using the fabric as an interconnect,” Neufeld added.

Pushing the boundaries of precision

When asked what the progress made on the data acquisition systems for the LHC might mean for wider applications, Neufeld said the value is all about greater precision for complex experiments. “To some extent, it’s just statistics. Either you really increase the amount of data and the precision by a significant factor, or you stop doing it,” Neufeld explained. “This work should lead to an important jump in precision. For example, the LHCb experiment’s online collection and analysis system currently selects just 1 million of the 40 million bunches of protons that cross in the accelerator every second, with the others being discarded based on less-precise hardware-calculated signatures. After the LHCb upgrade, the number of collisions is set to grow yet further, and we will look at all of them in the software, in order to take the best physics out of there. And since there are actually only a couple of milliseconds to do that for each collision, it’s really quite a leap forward.”t direct discussions with the Intel development team will continue to be invaluable to getting things right on projects as the team races to meet its deadline for the start of the upgrade work.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatment and vaccine development. Now, Lawrence Livermore National Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium-Range Weather Forecasts and the U.S. National Oceanic and At Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be nearer to becoming a practical reality. In this second inst Read more…

By John Russell

SiFive Accelerates Chip Design with Cloud Tools

March 25, 2020

Chip designers are drawing on new cloud resources along with conventional electronic design automation (EDA) tools to accelerate IC templates from tape-out to custom silicon. Among the challengers to chip design leade Read more…

By George Leopold

What’s New in Computing vs. COVID-19: White House Initiative, Frontera, RIKEN & More

March 25, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its scope and operation in a briefing led by Undersecretary of Ener Read more…

By John Russell

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel’s Neuromorphic Chip Scales Up (and It Smells)

March 18, 2020

Neuromorphic chips attempt to directly mimic the behavior of the human brain. Intel, which introduced its Loihi neuromorphic chip in 2017, has just announced that Loihi has been scaled up into a system that simulates over 100 million neurons. Furthermore, it announced that the chip smells. Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected]ome, a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This