STREAM Benchmark Author McCalpin Traces System Balance Trends

By Tiffany Trader

November 7, 2016

When Dr. John D. McCalpin introduced the STREAM benchmark in 1991, it had already become become clear that peak arithmetic rate was not an adequate measure of system performance for many applications. Since then, CPU performance has continued to outpace memory performance measures, leading to the processor-memory speed gap, known as the memory wall. In an invited talk at SC16, McCalpin will review the history of the changing “balances” between computation, memory latency, and memory bandwidth in HPC systems and will address the implications for the coming generation of systems.

Ahead of his talk at SC16, McCalpin gives us a peak into his activities at TACC, where he holds posts as HPC research scientist and co-director of ACElab, and provides an in-depth commentary on the dynamics between compute and memory in the context of the evolving HPC landscape.

HPCwire: What is the focus of your work at the Texas Advanced Computing Center (TACC)? 

Dr. John D. McCalpin: My work at TACC is primarily focused on understanding the performance characteristics of current and forthcoming hardware, and understanding the interactions between the hardware and the applications that we have identified as making up important parts of the workloads for TACC’s HPC-oriented systems. This involves a great deal of “detective work” – designing microbenchmarks to test various hypotheses about how the machines actually work at a low level, and designing tests to understand whether the hardware performance counters are counting what we think they are counting. The hardware performance counters that are useful are then used to track performance characteristics of all jobs run on our systems, which is useful for both finding misconfigured jobs and for finding out which attributes of the system are important for various application areas.

HPCwire: TACC has such a diverse array of HPC machines. I imagine that having access to many different architectures is important to your research. 

McCalpin: Diversity is clearly both a blessing and a curse. The good part of diversity is being able to test different system configurations and interconnect fabrics and allocate users to systems that are configured appropriately for their workloads. The bad part of diversity is having to deal with surprisingly large differences in nomenclature and software infrastructure (especially with respect to BIOS options) across vendors – even for identical processors. In addition to being able to test codes on different systems, a very useful tool has been the ability to control CPU frequency and memory frequency independently with recent processors. This allows us to run sensitivity-based performance analyses for a lot more codes than we would be able to analyze manually, and allows us to characterize applications even without subject-area expertise on staff.

HPCwire: Your upcoming talk at SC16 is titled “Memory Bandwidth and System Balance in HPC Systems” – what is your thesis?

McCalpin: My goal in this talk is to help people in the HPC community become aware of the extreme changes in HPC hardware over the last decade, and to argue that major architectural changes are needed to allow performance and price/performance to improve as rapidly as the underlying technology could allow. In some ways 2016-era HPC hardware looks like 2006-era HPC hardware – dominated by 2-socket commodity (x86) servers with a high-performance (typically InfiniBand) interconnect. At a lower level there has been an immense increase in hardware complexity to support the design goal of nearly-constant peak memory bandwidth per core, and it is this complexity that makes our current systems both incredibly difficult to understand and fundamentally ill-suited as starting points for either significant price reduction or significant power reduction.

Trends in the relative performance of floating-point arithmetic and several classes of data access for select HPC servers over the past 25 years. Source: John McCalpin

HPCwire: How have the dynamics between compute and memory evolved over time?

McCalpin: This is not an easy topic to summarize, but a few themes are worth noting. The first is that the HPC market has experienced several “disruptive technology” transitions, in which technology that was inferior in performance, but dramatically cheaper, replaced the dominant technology. We saw this happen in the mid-1990’s when RISC microprocessor-based systems displaced the traditional vector systems, and again starting around 2004 when x86-based systems displaced the RISC systems. A second recurring theme is the divergence between the high growth rate of FLOPS per core and the lower (or absent) growth rate in sustained memory bandwidth per core within each era. In the x86-multicore era of the last decade, the number of cores per package has increased and the sustained bandwidth per package has increased at about the same rate, but with constant (or slightly increasing) memory latency. This provides the third theme – the rapidly increasing relative cost of memory latency relative to computation. The approximately constant memory latency also drives the fourth theme – the overwhelming dominance of memory concurrency in determining sustained bandwidth. With sustained processor performance almost flat, compute performance is largely determined by how many cores you are able to use. With memory latency about flat, memory bandwidth per package is largely determined by how many outstanding cache misses you can generate.

HPCwire: In what ways will exascale further challenge system balance?

McCalpin: The traditional design point of “1 Byte/second per FLOP/second” does not look possible for exascale systems with current technology trends – both the purchase price and the power consumption are too high. The straight-line projection for exascale points to systems with extremely high compute capability per unit of bandwidth. These will be effective for a very limited number of applications. In the absence of a solid “general-purpose” design point, a more focused fallback position may be to develop multiple “special-purpose” systems, with architectures and implementations customized for a small number of particular applications of interest. This would allow substituting hundreds of millions of dollars of design and implementation expense for hundreds of millions of dollars of “general-purpose” hardware that is not well-matched to the specific application requirements.

HPCwire: What class of high-performance computer is best positioned to address memory bottlenecks?

HPC has been dominated by clusters of two-socket x86 nodes, which definitely have an easier time of providing bandwidth than larger SMP nodes. There are several reasons to believe that this design point has been pushed about as far as possible, and the introduction of a new layer of high-speed in-package memory will provide strong motivation to switch to single-socket nodes to eliminate off-chip cache coherence traffic. More radical possibilities will also be required (discussed below), but it is less clear how long that more painful transition can be put off.

HPCwire: Are you seeing advances on the algorithm and programming side to minimize data costs?

McCalpin: There has been some improvement in many application areas simply because more complex simulations are naturally more computationally dense, and therefore more likely to be limited by computation and less likely to be limited by memory access. This improvement has been partly deliberate, but also largely accidental – a happy byproduct of moving to more complex problems. Some applications can tolerate high memory access costs, but for applications that are not compute-bound we are significantly burdened by hardware architectures that do not allow data motion to be visible or controlled. This was the right answer in 1990, when arithmetic was much more expensive than memory reference, but in the current technology regime it is only justifiable by compatibility with the huge installed base of code – it would certainly not be the way to design an architecture for current technology balances or for expected technology balances in the remainder of the CMOS era. There have been attempts to provide programming languages and models to address data motion, but these have not been successful – programming languages can’t exploit hardware features that don’t exist, and can’t control behavior that is intended to be invisible. For many of the same reasons, we also tolerate architectures that are not energy-efficient because high per-node purchase prices have kept the energy costs relatively small (typically 5-7 percent of the initial purchase price per year of operation).

HPCwire: You introduced the STREAM Benchmark in 1991 — what is it and what trends have you documented?

McCalpin: The STREAM benchmark is a very simple, self-contained benchmark code (in C or Fortran) that measures the rate at which a system can perform four simple long-vector operations on floating-point numbers. For systems with caches, the standard way to configure the benchmark is to select an array size such that each of the three arrays used is much larger than the available cache(s), so that essentially all of the data accesses result in reads from memory or writes to memory. The benchmark is set up to time each iteration of each kernel and print out the computed memory access rate (reads + writes) for the fastest iteration of each kernel. When users are kind enough to submit results for publication, I add information that allows me to compute peak arithmetic performance and the balance between peak compute rates and sustained bandwidth. STREAM has been instrumental in getting vendors to pay attention to sustained, rather than peak, bandwidths, and the almost 1100 results in the database provide documentation of the trends and transitions I addressed above.

HPCwire: What is the path forward — are there technologies on the horizon that address the system imbalance issues that you’ve outlined?

McCalpin: It is important to note that “imbalance” is a relative term – in this case “relative” to the demands of the applications of interest. There are major application areas that are not yet experiencing performance limitations due to memory latency or sustained memory bandwidth. On the other hand, as the balances shift, applications that used to be completely compute-limited may now be strongly bandwidth-limited on current systems. (An excellent example of this is the local-area weather code WRF – when I reviewed it in 2006 on dual-core Opteron systems the execution-time breakdown was about 30 percent memory access and 70 percent compute, but when I reviewed performance on Xeon E5 v3 processors (c. 2015) this breakdown had reversed to 70 percent memory access time and 30 percent compute time.) Emerging technologies such as stacked DRAM provide the ability to push more data through a chip, but not at low cost and not at low power. Basic physics makes it clear lower cost and lower power can only come from slower, simpler processors distributed across the system in close proximity to the elements of the distributed memory. This approach requires a low-cost, high-performance interconnect fabric that is designed to support low-overhead data motion and synchronization. A much larger challenge is the development of high-productivity programming languages and models that can effectively map to such a massively parallel, heterogeneous, distributed hardware platform.

john-mccalpin-150x150Dr. John D. McCalpin is a Research Scientist in the High Performance Computing Group and Co-Director of ACElab at TACC of the University of Texas at Austin. At TACC, he works on performance analysis and performance modeling in support of both current users and future system acquisitions.

Dr. McCalpin will be speaking at SC16 on Wednesday, November 16th, from 4:15pm – 5pm in Ballroom-EFGHIJ at the Salt Palace Convention Center.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers


Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This