Heading into SC16 CENATE Flexes its Growing Muscle

By John Russell

November 8, 2016

In September, the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL) took possession of NVIDIA’s DGX-1 GPU-based (Pascal 100) supercomputer. More on what they are doing with it later. Soon, IBM will deliver its Con Tutto memory technology. Data Vortex’s advanced switch technology is already in-house, along with products (and ideas) from a handful of other technology heavyweights. Now entering its second year, CENATE already has some potent equipment and ambitious ideas.

“We have established the lofty goal for us to even design some neuromorphic technologies that are doing machine learning natively and not as you can do machine learning for example on a GPU in which you sort of come in from behind and map machine workload to the architecture of the GPU,” says Adolfy Hoisie, PNNL’s chief scientist for computing and CENATE’s principal investigator and director. All things (time and money) being available, “We would like those neuromorphic systems chips, whatever, to actually cast them in silicon.”

This is perhaps getting ahead of the story. Launched last fall and funded by the Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), CENATE is envisioned as a proving ground for advanced technology that is making its way into market – the DGX-1 and Data Vortex platforms are good examples – and as a lens for keeping a selective eye on technologies further out. A core goal is to assess these technologies for DOE workloads and to influence emerging architecture including those headed into leadership class systems.

Adolfy Hoisie, CENATE’s director and PNNL’s chief scientist for computing
Adolfy Hoisie, CENATE’s director and PNNL’s chief scientist for computing

In CENATE taxonomy, the center has what Hoisie labels as “four thrusts:”

  • Enablement of Tests Beds. “Test beds don’t have a uniform definitions of what they are because in CENATE even the notion of a technology pipeline, technology maturity pipeline [varies]. We are going to tackle technologies that range from very early concepts or blueprints all the way to pre-productions machines.”
  • Extensive Instrumentation and Measurement. “For a national laboratory, we have unique, instrumentation and measurement capability. This applies not only to measuring time, which is performance, but also to measurement of power and thermal effects, and we are contemplating venturing into reliability as well. At this time our lab has the capability to measure performance, power and thermal at very high resolutions and very high frequency for dynamic measurements. We measure both static and dynamic these technologies.”
  • Technology Evaluation. “Not all these technologies apply equally well to all the application workloads that ASCR may be interested in. What evaluation means is to determine what applications map well onto various architectures that are being contemplated and studied within CENATE then go the extra step in trying to guide future development of those activities within the applications.”
  • Modeling and Simulation. “[This] is a big forte of ours. It is a very exciting capability because if we had machines from vendor X from vendor Y and we have the capability to measure things, to validate the initial models, our modeling and simulation [expertise] allows us to ‘place’ this system into the future not just doing simple statistical extrapolations but really guiding the architecture to maximize the positive impact on the applications.”

CENATE_graphics

Work on any technology may cross all CENATE domains and evaluation of NVIDIA’s DGX-1, CENATE’s latest addition, is a good example.

“Firstly we are interested in ways to accelerate computation. We are interested in PASCAL as the next generation of GPU. We’ll see what we learn through measurements on Pascal, running benchmarks, and pushing it forward with what-if scenarios, [looking for] when Pascal goes from where it is right now to double precision, to increased memory, to possibly modification in the SIMD characteristics and so forth,” says Hoisie.

Part of the interest, not surprisingly, stems from DOE’s forthcoming Summit supercomputer, to be based at Oak Ridge Leadership Computing Facility. Summit will be based on IBM Power technology and NVIDIA GPUS. Ian Buck, vice president of accelerated computing, NVIDIA, says the DGX-1, like Summit, is based on a strong node architecture versus weak node – where you have “a single node with maybe one or two cores, some memory, and the you replicated that en masse, hundreds of thousands, and you relied on the network for kind of MPI scalability to achieve performance at scale.”

The large infrastructure requirements (cabling, power, networks) inherently limited the weak node approach and complicated programming, he argues. “The vision we have been pursuing for exascale and in general for supercomputing is building these strong nodes systems like DGX-1 where we put a lot of horsepower into a single node and minimize the number of nodes you have to scale up to,” says Ian Buck, vice president of accelerated computing, NVIDIA.

As on the OLCF website: “Summit will deliver more than five times the computational performance of Titan’s 18,688 nodes, using only approximately 3,400 nodes when it arrives in 2017. Like Titan, Summit will have a hybrid architecture, and each node will contain multiple IBM POWER9 CPUs and NVIDIA Volta GPUs all connected together with NVIDIA’s high-speed NVLink. Each node will have over half a terabyte of coherent memory (high bandwidth memory + DDR4) addressable by all CPUs and GPUs plus 800GB of non-volatile RAM that can be used as a burst buffer or as extended memory. To provide a high rate of I/O throughput, the nodes will be connected in a non-blocking fat-tree using a dual-rail Mellanox EDR InfiniBand interconnect.”

NVIDIA Tesla P100 frontThe DGX-1 is a mini-version of sorts, with eight P100 and NVlink interconnect. Buck says NVIDIA is looking to CENATE for “insight into scalability with a strong node architecture and to help us define where the bottlenecks are in power and these workloads so we can better optimize.” There’s no shortage of questions. “Maybe we should be focusing more on 32-bit floating and not 64-bit floating point for some of these workloads. Also programmability is a challenge. Hoisie and PNNL are users of PGI and OpenACC and may have ideas how can we improve programmability and compiler ability.”

Power consumption, of course, is major worry in the race to exascale and an area where CENATE and its unique measurement abilities can help address. “We are in the single gigaflop per watt era now with these strong nodes supercomputers,” says Buck. “We should get into the double digit category relatively soon and the goals for exascale we’ve got to get upwards of 25 Gflops per watt,” says Buck who is interested to see what new ideas CENATE might offer.

Besides learning more about overall acceleration, Hoisie says understanding and assessing the DGX-1’s machine learning capability is an important objective.

“We have developed here, not part of CENATE but part of PNNL, very important scalable algorithms for the machine learning. Those libraries exist today and they are open source and we want to assess frankly them on the DGX-1. NVIDIA represents this as a machine learning box, and we believe that there is some truth in that, but you know as researchers in CENATE we are going to ask the question, ‘OK let’s quantify that. What does it mean for a box to be a machine learning box?,’ he says.

“Part of that is looking at how it compares to others, how does DGX-1 compare to Knights Landing [systems] for example. Again these DGX-1 and KNL systems are offerings you can go and buy now, or they are very close to being in that stage (the sweet spot for CENATE). So we are going to look not only at where DXX-1 may go in the future, where Pascal may go in the future, and what would that do to our workloads, but also how machine learning performs today on the DGX-1 and how it compares with other top-of-the-line systems,” Hoisie says. “We are also looking at new algorithms for machine learning.”

Hoisie expects CENATE’s modeling and simulation capabilities will be valuable in this portion of the DGX-1 work. “If we measure something on a current machine and we validate and calibrate a model, we get enough confidence to predict what is the performance of a different algorithm is, sometimes drastically different sometimes only marginally different.”

Yet a third project with the DGX-1 is work by distinguished PNNL researcher Ruby Leung and her team with portions of their climate modeling code. In particular, says Hoisie, they are look at portion of code already running on GPUs and are benchmarking the code’s performance on DGX-1: “We are going to be able to say the DGX-1 is this much faster or it is not or whatever the case may be and look at what needs to be done to improve the performance as the specs of the machine allows.” Leung is the Chief Scientist of Department of Energy Accelerated Climate Modeling for Energy (ACME).

There’s obviously lots going on inside CENATE. One important mission element is diffusing the knowledge it gleans into the broader HPC community. Given all of the IP involved and the center’s capacity to identify shortcomings as well as strengths, sharing information is tricky.

“We would like the researchers from all of the national laboratories and from academia to have the opportunity to access these resources and we are very much committed to that; however it’s not a simple exercise. Vendors are legitimately concerned about crosspollination of ideas. We at the national laboratory are equipped to deal with that but academia is less so,” says Hoisie. As a general rule all of the national labs have NDAs “with all the vendors that are in the HPC orbit.”

For good or ill, Hoisie says, “If we saw something wrong, we wouldn’t go and publish a paper on that attempting to talk down that product; instead we would point it out for the benefit of the vendor and for ourselves the ways in which that particular architecture or architectural issue can be improved.”

Part of effort to share learnings will occur at regular CENATE workshops. “We are planning to have the first CENATE symposium in early spring next year. We want it to have enough information [available] so we can discuss ideas with the users, [we] want to have systems all set up, machines on the floor that people can access, both locally and remotely, and then we are going to organize that. It is something very important for us to do.” A frequency of the meetings hasn’t set been determined.

Clearly CENATE does have lofty goals and its list of projects is growing. That said, Hoisie is quick to emphasize CENATE has “no interest in hording technology” wanting instead to use the resources it has in a focused way the produces more than just incrementally advanced. On early stage CENATE project is development of a scalability test capability that combines optical and electronic technology for the network.

“Imagine that you have, for example, an InfiniBand network that connects a cluster of nodes – these are yet to be determined – and the network is also comprised of optical technology that allows you to basically re-cable the machine in seconds or less without literally having to move any cable. This allows us to create enclaves within the system that isolates jobs from the rest of the activity on the system, which is a problem that plagues say many of these very large scale machine in which the nodes are dedicated to a job but not a network path.

The design of this system for this project is far along, says Hoisie, and the project is now in the procurement process. “It’s generated a lot of interest within the vendor community – Penguin Computing, Cray, DDN, Mellanox, and optical switch vendor Calient. These vendors are all so interested in this concept and its potential for future commercial uses that in some cases, for example Mellanox, is donating the entire Infiniband gear for it.” That’s an indication of CENATE’s growing success,” says Hoisie.

As has been the case in the past few years, the national labs do not have individual SC booths, but are represented in the DOE both. CENATE will have a presence there and Hoisie expects several participating vendors, perhaps NVIDIA for example, to also have CENATE materials or demos at their booths.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This