Heading into SC16 CENATE Flexes its Growing Muscle

By John Russell

November 8, 2016

In September, the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL) took possession of NVIDIA’s DGX-1 GPU-based (Pascal 100) supercomputer. More on what they are doing with it later. Soon, IBM will deliver its Con Tutto memory technology. Data Vortex’s advanced switch technology is already in-house, along with products (and ideas) from a handful of other technology heavyweights. Now entering its second year, CENATE already has some potent equipment and ambitious ideas.

“We have established the lofty goal for us to even design some neuromorphic technologies that are doing machine learning natively and not as you can do machine learning for example on a GPU in which you sort of come in from behind and map machine workload to the architecture of the GPU,” says Adolfy Hoisie, PNNL’s chief scientist for computing and CENATE’s principal investigator and director. All things (time and money) being available, “We would like those neuromorphic systems chips, whatever, to actually cast them in silicon.”

This is perhaps getting ahead of the story. Launched last fall and funded by the Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), CENATE is envisioned as a proving ground for advanced technology that is making its way into market – the DGX-1 and Data Vortex platforms are good examples – and as a lens for keeping a selective eye on technologies further out. A core goal is to assess these technologies for DOE workloads and to influence emerging architecture including those headed into leadership class systems.

Adolfy Hoisie, CENATE’s director and PNNL’s chief scientist for computing
Adolfy Hoisie, CENATE’s director and PNNL’s chief scientist for computing

In CENATE taxonomy, the center has what Hoisie labels as “four thrusts:”

  • Enablement of Tests Beds. “Test beds don’t have a uniform definitions of what they are because in CENATE even the notion of a technology pipeline, technology maturity pipeline [varies]. We are going to tackle technologies that range from very early concepts or blueprints all the way to pre-productions machines.”
  • Extensive Instrumentation and Measurement. “For a national laboratory, we have unique, instrumentation and measurement capability. This applies not only to measuring time, which is performance, but also to measurement of power and thermal effects, and we are contemplating venturing into reliability as well. At this time our lab has the capability to measure performance, power and thermal at very high resolutions and very high frequency for dynamic measurements. We measure both static and dynamic these technologies.”
  • Technology Evaluation. “Not all these technologies apply equally well to all the application workloads that ASCR may be interested in. What evaluation means is to determine what applications map well onto various architectures that are being contemplated and studied within CENATE then go the extra step in trying to guide future development of those activities within the applications.”
  • Modeling and Simulation. “[This] is a big forte of ours. It is a very exciting capability because if we had machines from vendor X from vendor Y and we have the capability to measure things, to validate the initial models, our modeling and simulation [expertise] allows us to ‘place’ this system into the future not just doing simple statistical extrapolations but really guiding the architecture to maximize the positive impact on the applications.”

CENATE_graphics

Work on any technology may cross all CENATE domains and evaluation of NVIDIA’s DGX-1, CENATE’s latest addition, is a good example.

“Firstly we are interested in ways to accelerate computation. We are interested in PASCAL as the next generation of GPU. We’ll see what we learn through measurements on Pascal, running benchmarks, and pushing it forward with what-if scenarios, [looking for] when Pascal goes from where it is right now to double precision, to increased memory, to possibly modification in the SIMD characteristics and so forth,” says Hoisie.

Part of the interest, not surprisingly, stems from DOE’s forthcoming Summit supercomputer, to be based at Oak Ridge Leadership Computing Facility. Summit will be based on IBM Power technology and NVIDIA GPUS. Ian Buck, vice president of accelerated computing, NVIDIA, says the DGX-1, like Summit, is based on a strong node architecture versus weak node – where you have “a single node with maybe one or two cores, some memory, and the you replicated that en masse, hundreds of thousands, and you relied on the network for kind of MPI scalability to achieve performance at scale.”

The large infrastructure requirements (cabling, power, networks) inherently limited the weak node approach and complicated programming, he argues. “The vision we have been pursuing for exascale and in general for supercomputing is building these strong nodes systems like DGX-1 where we put a lot of horsepower into a single node and minimize the number of nodes you have to scale up to,” says Ian Buck, vice president of accelerated computing, NVIDIA.

As on the OLCF website: “Summit will deliver more than five times the computational performance of Titan’s 18,688 nodes, using only approximately 3,400 nodes when it arrives in 2017. Like Titan, Summit will have a hybrid architecture, and each node will contain multiple IBM POWER9 CPUs and NVIDIA Volta GPUs all connected together with NVIDIA’s high-speed NVLink. Each node will have over half a terabyte of coherent memory (high bandwidth memory + DDR4) addressable by all CPUs and GPUs plus 800GB of non-volatile RAM that can be used as a burst buffer or as extended memory. To provide a high rate of I/O throughput, the nodes will be connected in a non-blocking fat-tree using a dual-rail Mellanox EDR InfiniBand interconnect.”

NVIDIA Tesla P100 frontThe DGX-1 is a mini-version of sorts, with eight P100 and NVlink interconnect. Buck says NVIDIA is looking to CENATE for “insight into scalability with a strong node architecture and to help us define where the bottlenecks are in power and these workloads so we can better optimize.” There’s no shortage of questions. “Maybe we should be focusing more on 32-bit floating and not 64-bit floating point for some of these workloads. Also programmability is a challenge. Hoisie and PNNL are users of PGI and OpenACC and may have ideas how can we improve programmability and compiler ability.”

Power consumption, of course, is major worry in the race to exascale and an area where CENATE and its unique measurement abilities can help address. “We are in the single gigaflop per watt era now with these strong nodes supercomputers,” says Buck. “We should get into the double digit category relatively soon and the goals for exascale we’ve got to get upwards of 25 Gflops per watt,” says Buck who is interested to see what new ideas CENATE might offer.

Besides learning more about overall acceleration, Hoisie says understanding and assessing the DGX-1’s machine learning capability is an important objective.

“We have developed here, not part of CENATE but part of PNNL, very important scalable algorithms for the machine learning. Those libraries exist today and they are open source and we want to assess frankly them on the DGX-1. NVIDIA represents this as a machine learning box, and we believe that there is some truth in that, but you know as researchers in CENATE we are going to ask the question, ‘OK let’s quantify that. What does it mean for a box to be a machine learning box?,’ he says.

“Part of that is looking at how it compares to others, how does DGX-1 compare to Knights Landing [systems] for example. Again these DGX-1 and KNL systems are offerings you can go and buy now, or they are very close to being in that stage (the sweet spot for CENATE). So we are going to look not only at where DXX-1 may go in the future, where Pascal may go in the future, and what would that do to our workloads, but also how machine learning performs today on the DGX-1 and how it compares with other top-of-the-line systems,” Hoisie says. “We are also looking at new algorithms for machine learning.”

Hoisie expects CENATE’s modeling and simulation capabilities will be valuable in this portion of the DGX-1 work. “If we measure something on a current machine and we validate and calibrate a model, we get enough confidence to predict what is the performance of a different algorithm is, sometimes drastically different sometimes only marginally different.”

Yet a third project with the DGX-1 is work by distinguished PNNL researcher Ruby Leung and her team with portions of their climate modeling code. In particular, says Hoisie, they are look at portion of code already running on GPUs and are benchmarking the code’s performance on DGX-1: “We are going to be able to say the DGX-1 is this much faster or it is not or whatever the case may be and look at what needs to be done to improve the performance as the specs of the machine allows.” Leung is the Chief Scientist of Department of Energy Accelerated Climate Modeling for Energy (ACME).

There’s obviously lots going on inside CENATE. One important mission element is diffusing the knowledge it gleans into the broader HPC community. Given all of the IP involved and the center’s capacity to identify shortcomings as well as strengths, sharing information is tricky.

“We would like the researchers from all of the national laboratories and from academia to have the opportunity to access these resources and we are very much committed to that; however it’s not a simple exercise. Vendors are legitimately concerned about crosspollination of ideas. We at the national laboratory are equipped to deal with that but academia is less so,” says Hoisie. As a general rule all of the national labs have NDAs “with all the vendors that are in the HPC orbit.”

For good or ill, Hoisie says, “If we saw something wrong, we wouldn’t go and publish a paper on that attempting to talk down that product; instead we would point it out for the benefit of the vendor and for ourselves the ways in which that particular architecture or architectural issue can be improved.”

Part of effort to share learnings will occur at regular CENATE workshops. “We are planning to have the first CENATE symposium in early spring next year. We want it to have enough information [available] so we can discuss ideas with the users, [we] want to have systems all set up, machines on the floor that people can access, both locally and remotely, and then we are going to organize that. It is something very important for us to do.” A frequency of the meetings hasn’t set been determined.

Clearly CENATE does have lofty goals and its list of projects is growing. That said, Hoisie is quick to emphasize CENATE has “no interest in hording technology” wanting instead to use the resources it has in a focused way the produces more than just incrementally advanced. On early stage CENATE project is development of a scalability test capability that combines optical and electronic technology for the network.

“Imagine that you have, for example, an InfiniBand network that connects a cluster of nodes – these are yet to be determined – and the network is also comprised of optical technology that allows you to basically re-cable the machine in seconds or less without literally having to move any cable. This allows us to create enclaves within the system that isolates jobs from the rest of the activity on the system, which is a problem that plagues say many of these very large scale machine in which the nodes are dedicated to a job but not a network path.

The design of this system for this project is far along, says Hoisie, and the project is now in the procurement process. “It’s generated a lot of interest within the vendor community – Penguin Computing, Cray, DDN, Mellanox, and optical switch vendor Calient. These vendors are all so interested in this concept and its potential for future commercial uses that in some cases, for example Mellanox, is donating the entire Infiniband gear for it.” That’s an indication of CENATE’s growing success,” says Hoisie.

As has been the case in the past few years, the national labs do not have individual SC booths, but are represented in the DOE both. CENATE will have a presence there and Hoisie expects several participating vendors, perhaps NVIDIA for example, to also have CENATE materials or demos at their booths.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This