SC16 Preview: Modernizing, Modularizing Fortran Codes

By Mark Potts

November 9, 2016

The programming language Fortran has been in existence since 1957, and a large percentage of software that runs on HPC systems worldwide is written, at least in part, in Fortran. Since it has been in existence for so long, and so many scientists and engineers learned it early in their careers and have utilized it extensively, much of this code is not up to modern standards of software development.

Although there is no doubt that most of that code works well and runs fast, as codes have grown more complex and involve more developers, errors can easily be introduced. As I’ll discuss in greater detail next week at SC16, these types of errors can be greatly reduced with a more disciplined approach to software development.

Fortunately, the Fortran language has continued to evolve and has incorporated many of the most successful paradigms of more modern languages such as C++ and Java, while still retaining its overall speed and general simplicity. For example, the 2003 standard, which greatly enhanced Fortran 95, introduced pointers to procedures, object-oriented programming, and better interoperability with C among other things.

The new object-oriented paradigm is particularly useful when refactoring existing Fortran code to make it more modular and robust. It is also fairly straight-forward to implement!

It is fair to ask, “Why change something that’s not broken?” In some cases, it may not make any sense to refactor legacy code, but if the code is still being developed actively, and there are multiple contributors to the code base, refactoring with OOP standards makes a lot of sense. Perhaps the most important reason to refactor is to reduce code duplication. There is a tendency among many programmers to simply copy a subroutine or function that does 90% of what is needed and then modify the new routine to fit the rest. This can lead to lots of headaches if something in the original routine needs to be changed or added, and often leads to discrepancies that are hard to trace. Fortunately, using the classes, inheritance, and polymorphism now available in Fortran 2003, this dilemma can be almost completely avoided.

When two or more files contain very similar routines, it is usually possible to combine the shared functionality in a base class and then add derived classes that “finish off” the calculation in their own unique manner. By eliminating the copied code, the new classes will now make use of the same core computation, which can be easily modified for all classes at once and also lends itself very well to the addition of unit testing—a big component to any modern software design. The figures below show a very simple example of this sort of combination using an abstract base class along with two derived classes.

hpcwire-fortran-fig1
Figure 1: This is a simple abstract base class with a procedure (process_most_data) defined to handle the common core of computation.

 

hpcwire-fortran-fig2a
.
hpcwire-fortran-fig2b
Figure 2: Sample derived classes (sample_one_class and sample_two_class)

Both derived classes inherit the process_most_data procedure from the abstract base class, and both use that function directly in their own version of process_data. The “=>” seen under the extends command refers to the fact that the process_data procedure required in the base class has been implemented locally and renamed within the specific derived class. Figure 3 below shows a sample driver routine that allocates both classes, sets the initial data value for each and then has each instance process the data according to its version of the procedure.

hpcwire-fortran-fig3
Figure 3: Sample driver program that calls two derived classes and processes sample data.

When compiled and run, the output looks as follows:

first data is now    33.000000000000000
second data is now    22.000000000000000

Both derived classes (first and second) start with data equal to 10.0 when each is called to run the process_data routine. Each then runs through the common core functionality provided by the abstract base class and then performs its own individual calculation. In the case of first, that is multiply by 3.0; for second, it is multiply by 2.0.

While this is clearly a trivial example of combining common calculations into a single procedure, it provides a template for doing so in an object-oriented manner using Fortran. Because abstract classes cannot be instantiated, the use of an abstract base class in this instance also ensures that no future developer will accidentally try to use it rather than a fully defined derived class.

Extending this idea even further, unit tests can now be added to these new classes. Using pFUnit, which is an open source unit-testing framework for Fortran, a unit test for sample_one_class would look something like Figure 4.

hpcwire-fortran-fig4
Figure 4

In the sample unit test shown in Figure 4, most of the text is boilerplate, with only the highlighted red text indicating the tailoring for the sample class. The class is included at the top of the file, it is defined under @TestCase, allocated in setup, and deallocated in tearDown—all with very simple additions to the boilerplate. The actual test takes place in testSampleOne where the process_data procedure is called after starting with an initial data value of 10.0. The AssertEqual command checks that the value of data matches 33.0, as it should after the process_data procedure is complete. This sort of test will run extremely quickly and will provide an early warning sign if the base class is changed without making sure that all derived classes are updated appropriately.

I’ll be presenting on this topic at SC16 on Wednesday, Nov. 16 at 4 p.m., and would be happy to answer your questions. Please stop by!

About the Author:

Mark Potts, Ph.D., is a Senior Computational Scientist at RedLine Performance Solutions, LLC. Dr. Potts has over 20 years of software development experience, including more than 15 years of work in research and application development using HPC systems. He joined Redline Performance Solutions in 2015 and has since been working with NOAA to accelerate and modernize their Gridpoint Statistical Interpolation (GSI) analysis code used to assimilate data into operational weather models.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire