Tackling the Co-design 3.0 Puzzle – New Thinking Needed

By John Russell

November 9, 2016

Co-design has long been a vibrant discussion point in the HPC community. The need to coordinate development across hardware, software, and system architecture in the face of constraints from a declining Moore’s Law is a given. The question is how to do it. In this brief Q&A, Sadasivan (Sadas) Shankar, visiting lecturer at Harvard and former senior principal engineer in Intel’s Technology and Manufacturing Organization, glimpses into his invited SC16 talk, Co-Design 3.0 – Configurable Extreme Computing, Leveraging Moore’s Law for Real Applications.

HPCWire: Co-design means different things to different people and your talk is positioned as a discussion around emerging Co-design 3.0. What’s your definition of co-design and maybe talk a bit about the six scaling paradigm you suggest are relevant to co-design.

Sadasivan (Sadas) Shankar, Harvard
Sadasivan (Sadas) Shankar, Harvard

Sadas Shankar: Co-design refers to the methodology in which architecture of the computing platform, hardware, software, and applications are concurrently designed for a global optimum. In other words, it is the antithesis of the traditionally serial (or mostly serial) way of addressing the problem.

The six scaling paradigms are given below:

  1. Scale of physical and man-made entities
  2. Combinatorial Scaling
  3. Scaling of algorithms
  4. Technology scaling
  5. Economics of scaling
  6. Scaling of applications

Currently most of the thinking revolves around Moore’s law and cost (paradigms 4 and 5), with focus on big data analytics (part of paradigm 6). Till now, Moore’s law was the main driver for information technology, which in turn was driving the ecosystem. However, there are more ecosystems and collaterals changing that need to be addressed.

One specific example is can we could use the algorithms that have been developed for big data (paradigm 3 & 6) to accelerate drug development or design a new battery (paradigm 6) or solve environmental toxicity (paradigms 2 and 6). This is starting to happen, but not in a large scale. The key maybe that the current paradigm in which a given architecture-hardware combination on which software-algorithms are developed for a given application is too restricted and non-optimal. Ideally, it should be available to users to be able to customize it as they need it (See the last question).

screen-shot-2016-11-08-at-3-52-04-pmHPCWire: You use a Lego metaphor for how systems components – hardware, applications, algorithms, architecture, software – must become more easily integrated; yet doing this has proven challenging. How should differing domain expertise and different communities (academia, industry, government) be incented and organized to work together?

Shankar: Within United States, at the governmental level, Department of Energy, NSA and related organizations are the biggest consumers of computation. The hardware vendors put together components, microprocessors to certain high level specifications. The users compile software and use them depending on the applications. The business model for HPC has been like this since the advent of the mainframe. But recently, things have shifted. Silicon Valley and the entrepreneurs are starting to disrupt this model at low cost. Examples are given in the talk.

The question is can we put together a hybrid model in which an initiative in which academics, national labs and other federal agencies, and industry can come together to develop an evolving and flexible initiative. The main difference between this and traditional HPC or Computational centers is bringing in Silicon Valley start-up thinking into the mix. The ability to make Co-design an evolving effort with low cost business model and long-term sustainability is important to make this happen. For this both academics and industrial partners need to be part of this as well.

There is another problem brewing in the horizon; HPC (from the era of Thinking Machines, Cray, CDC etc.) is not considered an exciting area for students to specialize in or do research in. This means that the pipeline for HPC may dry up. Hence the need to tying Co-design with the academia in addition to just the national labs.

HPCWire: What is different about Co-Design 3.0, compared to what is already being done or why do we need it?

Shankar: Co-design 3.0 is both about a thinking shift and more distributed ecosystem in which not just the high-end users, but all get to design computing for their purposes. In order to financially and intellectually sustain and grow such a system, it needs the academic and industrial participants in addition to research labs and federal agencies. Coming back to the example of Lego blocks, players could make a truck or a car depending on the need. This ability is due to modularity, integrability and re-usability of the blocks. If I can personalize a smart phone (with “apps”), should this Co-design have “blocks” and “apps”? We don’t know yet, but should test out the different possibilities.

HPCWire: Two technologies getting a lot of attentions today are neuromorphic computing and quantum computing, each in its own way representing different computing paradigms. Looking at the implications flowing from Co-design 3.0 what’s your sense of emerging computing technologies that will be important in Post Moore’s era?

Shankar: Co-design 3.0 is meant to address these kinds of shifting paradigms. Both of these computing platforms may be optimal for specific applications such as neuromorphic computing for pattern recognition, and quantum computing for cryptography. This is in line with Co-design 3.0 thinking-one should not have to be locked into a given hardware and architecture for all applications. This is possible as long as the building “blocks” are reasonably modular enough, but yet can be assembled depending on the applications and disassembled without a large cost penalty. Although this is more difficult for quantum computing (QC) where information processing itself is based on qubits, there is still ability to develop the blocks such that part of a given larger problem can be solved in QC, while the remaining part can be solved in conventional HPC architectures. We will touch upon some of the challenges that need to be addressed by research, development, and application. Co-design 3.0 is as much a thinking paradigm as well as a framework to make it happen by some of the best minds from academia to government to Silicon Valley.

screen-shot-2016-11-08-at-2-47-50-pmHPCWire: Finally, in your abstract, you note developing a class at Harvard in which students are “taught hands-on about using extreme computing to address real applications.” Could you briefly describe the effort and how it is working?

Shankar: As we mentioned before, students seem to be losing interest in HPC as an area for future career growth. In order to get the students excited, we offered a class, possibly for the first time in US or elsewhere on “Extreme Computing for Real Applications”. We wanted the students t get excited that they could solve problems of societal importance by using hardware and software at the limits of what computing could accomplish. The course gave the students hands-on experience on 3 different applications (social networking, cancer genomics, battery modeling), on 3 different computing hardware platforms (cloud computing, cluster computing, supercomputer in Department of Energy Laboratory).

This course was taught by faculty from Harvard, in collaboration with the visitors from National Cancer Institute and Argonne National Laboratories, and had both lectures explaining the basis of theory and methods and computer lab sessions in which the students actually solved the problem. We are planning to offer the class again in Fall 2017. More write-up of the class is given in the web link below: Computing that goes to extremes

Shankar’s SC16 talk is Thursday at 10:30 am: http://sc16.supercomputing.org/presentation/?id=inv109&sess=sess261

Presenter Bio

Sadasivan (Sadas) Shankar is the first Margaret and Will Hearst Visiting Lecturer in Computational Science and Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences. In fall 2013, as the first Distinguished Scientist in Residence at the Institute of Applied Computational Sciences in Harvard, along with Dr. Tim Kaxiras, he developed and co-instructed with Dr. Brad Malone, a graduate-level class on Computational Materials Design, which covered fundamental atomic and quantum techniques and practical applications for new materials by design.

Shankar was also senior principal engineer and led materials design in the Design and Technology Group within the Intel Technology and Manufacturing Organization. Over his tenure in research and development in the semiconductor industry, he and his team have worked on several new initiatives; using modeling to optimize semiconductor processing and equipment for several technology generations, advanced process control using physics-based models, thermo-mechanical reliability of microprocessors, thermal modeling of 3D die stacking, and using thermodynamic principles to estimate energy efficiency of ideal computing architectures.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

U.S. Quantum Director Charles Tahan Calls for NQIA Reauthorization Now

February 29, 2024

(February 29, 2024) Origin stories make the best superhero movies. I am no superhero, but I still remember what my undergraduate thesis advisor said when I told him that I wanted to design quantum computers in graduate s Read more…

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift is propelled by the advent of artificial intelligence (AI), Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure topic called supercomputing, but when it was announced that S Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with technology itself. During this early phase of GenAI technol Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A week earlier a team working with St. Jude Children’s Hospita Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Argonne Aurora Walk About Video

February 27, 2024

In November 2023, Aurora was ranked #2 on the Top 500 list. That ranking was with half of Aurora running the HPL benchmark. It seems after much delay, 2024 will finally be Aurora's time in the spotlight. For those cur Read more…

Royalty-free stock illustration ID: 1988202119

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure t Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A we Read more…

South African Cluster Competition Team Enjoys Big Texas HPC Adventure

February 26, 2024

Texas A&M University's High-Performance Research Computing (HPRC) hosted an elite South African delegation on February 8 - undergraduate computer science (a Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia Wins SC23, But Gets Socked by Microsoft’s AI Chip

November 16, 2023

Nvidia was invisible with a very small booth and limited floor presence, but thanks to its sheer AI dominance, it was a winner at the Supercomputing 2023. Nv Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Royalty-free stock illustration ID: 1675260034

RISC-V Summit: Ghosts of x86 and ARM Linger

November 12, 2023

Editor note: See SC23 RISC-V events at the end of the article At this year's RISC-V Summit, the unofficial motto was "drain the swamp," that is, x86 and Read more…

China Deploys Massive RISC-V Server in Commercial Cloud

November 8, 2023

If the U.S. government intends to curb China's adoption of emerging RISC-V architecture to develop homegrown chips, it may be getting late. Last month, China Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Chinese Company Developing 64-core RISC-V Chip with Tech from U.S.

November 13, 2023

Chinese chip maker SophGo is developing a RISC-V chip based on designs from the U.S. company SiFive, which highlights challenges the U.S. government may face in Read more…

Royalty-free stock illustration ID: 1182444949

Forget Zettascale, Trouble is Brewing in Scaling Exascale Supercomputers

November 14, 2023

In 2021, Intel famously declared its goal to get to zettascale supercomputing by 2027, or scaling today's Exascale computers by 1,000 times. Moving forward t Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire