Tackling the Co-design 3.0 Puzzle – New Thinking Needed

By John Russell

November 9, 2016

Co-design has long been a vibrant discussion point in the HPC community. The need to coordinate development across hardware, software, and system architecture in the face of constraints from a declining Moore’s Law is a given. The question is how to do it. In this brief Q&A, Sadasivan (Sadas) Shankar, visiting lecturer at Harvard and former senior principal engineer in Intel’s Technology and Manufacturing Organization, glimpses into his invited SC16 talk, Co-Design 3.0 – Configurable Extreme Computing, Leveraging Moore’s Law for Real Applications.

HPCWire: Co-design means different things to different people and your talk is positioned as a discussion around emerging Co-design 3.0. What’s your definition of co-design and maybe talk a bit about the six scaling paradigm you suggest are relevant to co-design.

Sadasivan (Sadas) Shankar, Harvard
Sadasivan (Sadas) Shankar, Harvard

Sadas Shankar: Co-design refers to the methodology in which architecture of the computing platform, hardware, software, and applications are concurrently designed for a global optimum. In other words, it is the antithesis of the traditionally serial (or mostly serial) way of addressing the problem.

The six scaling paradigms are given below:

  1. Scale of physical and man-made entities
  2. Combinatorial Scaling
  3. Scaling of algorithms
  4. Technology scaling
  5. Economics of scaling
  6. Scaling of applications

Currently most of the thinking revolves around Moore’s law and cost (paradigms 4 and 5), with focus on big data analytics (part of paradigm 6). Till now, Moore’s law was the main driver for information technology, which in turn was driving the ecosystem. However, there are more ecosystems and collaterals changing that need to be addressed.

One specific example is can we could use the algorithms that have been developed for big data (paradigm 3 & 6) to accelerate drug development or design a new battery (paradigm 6) or solve environmental toxicity (paradigms 2 and 6). This is starting to happen, but not in a large scale. The key maybe that the current paradigm in which a given architecture-hardware combination on which software-algorithms are developed for a given application is too restricted and non-optimal. Ideally, it should be available to users to be able to customize it as they need it (See the last question).

screen-shot-2016-11-08-at-3-52-04-pmHPCWire: You use a Lego metaphor for how systems components – hardware, applications, algorithms, architecture, software – must become more easily integrated; yet doing this has proven challenging. How should differing domain expertise and different communities (academia, industry, government) be incented and organized to work together?

Shankar: Within United States, at the governmental level, Department of Energy, NSA and related organizations are the biggest consumers of computation. The hardware vendors put together components, microprocessors to certain high level specifications. The users compile software and use them depending on the applications. The business model for HPC has been like this since the advent of the mainframe. But recently, things have shifted. Silicon Valley and the entrepreneurs are starting to disrupt this model at low cost. Examples are given in the talk.

The question is can we put together a hybrid model in which an initiative in which academics, national labs and other federal agencies, and industry can come together to develop an evolving and flexible initiative. The main difference between this and traditional HPC or Computational centers is bringing in Silicon Valley start-up thinking into the mix. The ability to make Co-design an evolving effort with low cost business model and long-term sustainability is important to make this happen. For this both academics and industrial partners need to be part of this as well.

There is another problem brewing in the horizon; HPC (from the era of Thinking Machines, Cray, CDC etc.) is not considered an exciting area for students to specialize in or do research in. This means that the pipeline for HPC may dry up. Hence the need to tying Co-design with the academia in addition to just the national labs.

HPCWire: What is different about Co-Design 3.0, compared to what is already being done or why do we need it?

Shankar: Co-design 3.0 is both about a thinking shift and more distributed ecosystem in which not just the high-end users, but all get to design computing for their purposes. In order to financially and intellectually sustain and grow such a system, it needs the academic and industrial participants in addition to research labs and federal agencies. Coming back to the example of Lego blocks, players could make a truck or a car depending on the need. This ability is due to modularity, integrability and re-usability of the blocks. If I can personalize a smart phone (with “apps”), should this Co-design have “blocks” and “apps”? We don’t know yet, but should test out the different possibilities.

HPCWire: Two technologies getting a lot of attentions today are neuromorphic computing and quantum computing, each in its own way representing different computing paradigms. Looking at the implications flowing from Co-design 3.0 what’s your sense of emerging computing technologies that will be important in Post Moore’s era?

Shankar: Co-design 3.0 is meant to address these kinds of shifting paradigms. Both of these computing platforms may be optimal for specific applications such as neuromorphic computing for pattern recognition, and quantum computing for cryptography. This is in line with Co-design 3.0 thinking-one should not have to be locked into a given hardware and architecture for all applications. This is possible as long as the building “blocks” are reasonably modular enough, but yet can be assembled depending on the applications and disassembled without a large cost penalty. Although this is more difficult for quantum computing (QC) where information processing itself is based on qubits, there is still ability to develop the blocks such that part of a given larger problem can be solved in QC, while the remaining part can be solved in conventional HPC architectures. We will touch upon some of the challenges that need to be addressed by research, development, and application. Co-design 3.0 is as much a thinking paradigm as well as a framework to make it happen by some of the best minds from academia to government to Silicon Valley.

screen-shot-2016-11-08-at-2-47-50-pmHPCWire: Finally, in your abstract, you note developing a class at Harvard in which students are “taught hands-on about using extreme computing to address real applications.” Could you briefly describe the effort and how it is working?

Shankar: As we mentioned before, students seem to be losing interest in HPC as an area for future career growth. In order to get the students excited, we offered a class, possibly for the first time in US or elsewhere on “Extreme Computing for Real Applications”. We wanted the students t get excited that they could solve problems of societal importance by using hardware and software at the limits of what computing could accomplish. The course gave the students hands-on experience on 3 different applications (social networking, cancer genomics, battery modeling), on 3 different computing hardware platforms (cloud computing, cluster computing, supercomputer in Department of Energy Laboratory).

This course was taught by faculty from Harvard, in collaboration with the visitors from National Cancer Institute and Argonne National Laboratories, and had both lectures explaining the basis of theory and methods and computer lab sessions in which the students actually solved the problem. We are planning to offer the class again in Fall 2017. More write-up of the class is given in the web link below: Computing that goes to extremes

Shankar’s SC16 talk is Thursday at 10:30 am: http://sc16.supercomputing.org/presentation/?id=inv109&sess=sess261

Presenter Bio

Sadasivan (Sadas) Shankar is the first Margaret and Will Hearst Visiting Lecturer in Computational Science and Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences. In fall 2013, as the first Distinguished Scientist in Residence at the Institute of Applied Computational Sciences in Harvard, along with Dr. Tim Kaxiras, he developed and co-instructed with Dr. Brad Malone, a graduate-level class on Computational Materials Design, which covered fundamental atomic and quantum techniques and practical applications for new materials by design.

Shankar was also senior principal engineer and led materials design in the Design and Technology Group within the Intel Technology and Manufacturing Organization. Over his tenure in research and development in the semiconductor industry, he and his team have worked on several new initiatives; using modeling to optimize semiconductor processing and equipment for several technology generations, advanced process control using physics-based models, thermo-mechanical reliability of microprocessors, thermal modeling of 3D die stacking, and using thermodynamic principles to estimate energy efficiency of ideal computing architectures.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Quantum Challenge 2021 – Let the Programming Begin!

May 17, 2021

Looking to sharpen or perhaps simply explore your quantum programming skills? On Thursday, IBM fires up its IBM Quantum Challenge 2021 marking the fifth anniversary of IBM Quantum Experience cloud services and the 40th  Read more…

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire