Tackling the Co-design 3.0 Puzzle – New Thinking Needed

By John Russell

November 9, 2016

Co-design has long been a vibrant discussion point in the HPC community. The need to coordinate development across hardware, software, and system architecture in the face of constraints from a declining Moore’s Law is a given. The question is how to do it. In this brief Q&A, Sadasivan (Sadas) Shankar, visiting lecturer at Harvard and former senior principal engineer in Intel’s Technology and Manufacturing Organization, glimpses into his invited SC16 talk, Co-Design 3.0 – Configurable Extreme Computing, Leveraging Moore’s Law for Real Applications.

HPCWire: Co-design means different things to different people and your talk is positioned as a discussion around emerging Co-design 3.0. What’s your definition of co-design and maybe talk a bit about the six scaling paradigm you suggest are relevant to co-design.

Sadasivan (Sadas) Shankar, Harvard
Sadasivan (Sadas) Shankar, Harvard

Sadas Shankar: Co-design refers to the methodology in which architecture of the computing platform, hardware, software, and applications are concurrently designed for a global optimum. In other words, it is the antithesis of the traditionally serial (or mostly serial) way of addressing the problem.

The six scaling paradigms are given below:

  1. Scale of physical and man-made entities
  2. Combinatorial Scaling
  3. Scaling of algorithms
  4. Technology scaling
  5. Economics of scaling
  6. Scaling of applications

Currently most of the thinking revolves around Moore’s law and cost (paradigms 4 and 5), with focus on big data analytics (part of paradigm 6). Till now, Moore’s law was the main driver for information technology, which in turn was driving the ecosystem. However, there are more ecosystems and collaterals changing that need to be addressed.

One specific example is can we could use the algorithms that have been developed for big data (paradigm 3 & 6) to accelerate drug development or design a new battery (paradigm 6) or solve environmental toxicity (paradigms 2 and 6). This is starting to happen, but not in a large scale. The key maybe that the current paradigm in which a given architecture-hardware combination on which software-algorithms are developed for a given application is too restricted and non-optimal. Ideally, it should be available to users to be able to customize it as they need it (See the last question).

screen-shot-2016-11-08-at-3-52-04-pmHPCWire: You use a Lego metaphor for how systems components – hardware, applications, algorithms, architecture, software – must become more easily integrated; yet doing this has proven challenging. How should differing domain expertise and different communities (academia, industry, government) be incented and organized to work together?

Shankar: Within United States, at the governmental level, Department of Energy, NSA and related organizations are the biggest consumers of computation. The hardware vendors put together components, microprocessors to certain high level specifications. The users compile software and use them depending on the applications. The business model for HPC has been like this since the advent of the mainframe. But recently, things have shifted. Silicon Valley and the entrepreneurs are starting to disrupt this model at low cost. Examples are given in the talk.

The question is can we put together a hybrid model in which an initiative in which academics, national labs and other federal agencies, and industry can come together to develop an evolving and flexible initiative. The main difference between this and traditional HPC or Computational centers is bringing in Silicon Valley start-up thinking into the mix. The ability to make Co-design an evolving effort with low cost business model and long-term sustainability is important to make this happen. For this both academics and industrial partners need to be part of this as well.

There is another problem brewing in the horizon; HPC (from the era of Thinking Machines, Cray, CDC etc.) is not considered an exciting area for students to specialize in or do research in. This means that the pipeline for HPC may dry up. Hence the need to tying Co-design with the academia in addition to just the national labs.

HPCWire: What is different about Co-Design 3.0, compared to what is already being done or why do we need it?

Shankar: Co-design 3.0 is both about a thinking shift and more distributed ecosystem in which not just the high-end users, but all get to design computing for their purposes. In order to financially and intellectually sustain and grow such a system, it needs the academic and industrial participants in addition to research labs and federal agencies. Coming back to the example of Lego blocks, players could make a truck or a car depending on the need. This ability is due to modularity, integrability and re-usability of the blocks. If I can personalize a smart phone (with “apps”), should this Co-design have “blocks” and “apps”? We don’t know yet, but should test out the different possibilities.

HPCWire: Two technologies getting a lot of attentions today are neuromorphic computing and quantum computing, each in its own way representing different computing paradigms. Looking at the implications flowing from Co-design 3.0 what’s your sense of emerging computing technologies that will be important in Post Moore’s era?

Shankar: Co-design 3.0 is meant to address these kinds of shifting paradigms. Both of these computing platforms may be optimal for specific applications such as neuromorphic computing for pattern recognition, and quantum computing for cryptography. This is in line with Co-design 3.0 thinking-one should not have to be locked into a given hardware and architecture for all applications. This is possible as long as the building “blocks” are reasonably modular enough, but yet can be assembled depending on the applications and disassembled without a large cost penalty. Although this is more difficult for quantum computing (QC) where information processing itself is based on qubits, there is still ability to develop the blocks such that part of a given larger problem can be solved in QC, while the remaining part can be solved in conventional HPC architectures. We will touch upon some of the challenges that need to be addressed by research, development, and application. Co-design 3.0 is as much a thinking paradigm as well as a framework to make it happen by some of the best minds from academia to government to Silicon Valley.

screen-shot-2016-11-08-at-2-47-50-pmHPCWire: Finally, in your abstract, you note developing a class at Harvard in which students are “taught hands-on about using extreme computing to address real applications.” Could you briefly describe the effort and how it is working?

Shankar: As we mentioned before, students seem to be losing interest in HPC as an area for future career growth. In order to get the students excited, we offered a class, possibly for the first time in US or elsewhere on “Extreme Computing for Real Applications”. We wanted the students t get excited that they could solve problems of societal importance by using hardware and software at the limits of what computing could accomplish. The course gave the students hands-on experience on 3 different applications (social networking, cancer genomics, battery modeling), on 3 different computing hardware platforms (cloud computing, cluster computing, supercomputer in Department of Energy Laboratory).

This course was taught by faculty from Harvard, in collaboration with the visitors from National Cancer Institute and Argonne National Laboratories, and had both lectures explaining the basis of theory and methods and computer lab sessions in which the students actually solved the problem. We are planning to offer the class again in Fall 2017. More write-up of the class is given in the web link below: Computing that goes to extremes

Shankar’s SC16 talk is Thursday at 10:30 am: http://sc16.supercomputing.org/presentation/?id=inv109&sess=sess261

Presenter Bio

Sadasivan (Sadas) Shankar is the first Margaret and Will Hearst Visiting Lecturer in Computational Science and Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences. In fall 2013, as the first Distinguished Scientist in Residence at the Institute of Applied Computational Sciences in Harvard, along with Dr. Tim Kaxiras, he developed and co-instructed with Dr. Brad Malone, a graduate-level class on Computational Materials Design, which covered fundamental atomic and quantum techniques and practical applications for new materials by design.

Shankar was also senior principal engineer and led materials design in the Design and Technology Group within the Intel Technology and Manufacturing Organization. Over his tenure in research and development in the semiconductor industry, he and his team have worked on several new initiatives; using modeling to optimize semiconductor processing and equipment for several technology generations, advanced process control using physics-based models, thermo-mechanical reliability of microprocessors, thermal modeling of 3D die stacking, and using thermodynamic principles to estimate energy efficiency of ideal computing architectures.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in its cloud service.  Google claimed the CPU is based on cut Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire