The Fun Work of Technology Crystal Ball Gazing at SC16

By John Russell

November 10, 2016

On Monday at SC16 the 1st International Workshop on Post-Moore Era Supercomputing (PMES) will dive into the world of tomorrow. On Wednesday it will be followed by a distinguished panel, Post Moore’s Era Supercomputing in 20 Years, digging into some of the ideas explored at the workshop. These kinds of sessions are always fun and considering the panel participants, this one should be fascinating.

Panel moderator Jeffrey Vetter, leader of Oak Ridge National Laboratory’s Future Technology Group, says 41 papers were submitted for the workshop and eventually whittled down to 15. In this brief Q&A, Vetter sets the stage for what the workshop and panel hope to tackle and offers a few ideas of his own. Here’s the list of panelists:

HPCWire: Technology crystal ball gazing is always fun. What are the broad goals of the panel and what key issues you think need to be addressed? Maybe comment on the workshop and how it will inform panel and perhaps on why the specific panelists were selected (if appropriate).

Jeffrey Vetter: Our goal with this panel is to discuss the potential opportunities and challenges for Post Moore technologies from the perspective of the HPC community. HPC occupies a different portion of the design space than other options like enterprise or mobile.

The Post Moore’s Era Supercomputing (PMES) design space is very broad, and our PMES organizing committee decided to have very broad criteria for submissions in order to show a diversity of potential solutions. As a result, in our upcoming workshop, we have accepted papers on neuromorphic computing, adiabatic quantum computing, approximate computing, reconfigurable computing, software and performance modeling for PMES systems, and a few others. We hope that the audience can learn more about these topics, and make their own assessment of these technologies.

HPCWire: Quantum computing and neuromorphic computing are frequently discussed as game-changers moving forward. When you look at these two (sort of) emerging technologies how would you characterize their strengths, shortcomings, and needed advances to become key players going forward?

Jeffrey Vetter, ORNL Future Technologies Group
Jeffrey Vetter, ORNL Future Technologies Group

Vetter: Indeed. Quantum computing and neuromorphic computing have had recent successes. The concepts for these technologies have been around for two decades or more. Recently, we have seen some interesting experiments and progress.

Quantum computing has incredible possibilities, starting with Shor’s initial paper on factoring, and, now, with recent work in other algorithms. However, the goal of creating a scalable computing system from thousands (or more) of qubits remains an open research question. Manufacturing and controlling just a few qubits still has challenges like fine-grained quantum error correction, and building a very complex classical electronic control system to manage the qubits. Aside from the system itself, we need mission critical applications and programming concepts that can exploit this new technology.

Neuromorphic computing has seen tremendous progress in the past five years with systems like True North and SpiNNaker. Much of this work uses traditional CMOS digital electronics to emulate aspects of brain-inspired computing, like neurons and synapses. Even though these systems must be trained offline, they can have exceptional performance and energy efficiency. Recently, researchers have been exploring the use of memristors to implement this functionality, including online training, and they look promising. Two PMES papers illustrate these approaches.

HPCWire: How far can existing technology (CMOS and perhaps other process-friendly materials) take us? There are reports Samsung has beaten Intel to 10nm technology and at ISC16 Intel presenter Josh Fryman said the company is actively looking at “post 7 nm” technology.

Vetter: I believe that we will have CMOS devices indefinitely; it is an exceptional technology! In other words, even though device scaling will stop at some point with CMOS, I believe that it will continue to provide significant value, occupying an important rung on our technology ladder, until unseated by some disruptive technology.

A potentially more important consequence is that of economic and business strategies. The past year has been chaotic and illustrative as we have seen some of the largest semiconductor business deals ever: Softbank acquiring ARM, Qualcomm acquiring NXP, Intel acquiring Altera, Avago acquiring Broadcom, Broadcom acquiring Brocade, Western Digital acquiring SanDisk, etc. Many of these deals are being driven by economies of scale in design, engineering, and manufacturing costs. This may be the ultimate halting condition. It will be interesting to see who goes next.

HPCWire: Power is a huge issue. Supercomputing needs too much – rather amazing the brain does with 10-20W what SCs need MW for. How do you see that challenge being addressed and what are some of the emerging avenues that look promising?

Vetter: We are already experiencing an important transition in memory systems to non-volatile memory (NVM), due in part to cost and energy efficiency. Consumer and enterprise systems have been using NVM for quite some time, but 3D NAND flash is emerging to be the dominate memory type (including DRAM) available in nearly every computing architecture. Future NVM devices, like memristors, phase-change memory, and the Intel/Micron Xpoint memory, may have benefits over flash memory, which will allow engineers to integrate NVM even closer to the processor, up the memory hierarchy.

HPCWire: All this computing power needs to be able to do real work, something I know that is close to the heart of ORNL’s FTG team. What’s your take on the software challenge, in particular application software, and what/how should efforts (maybe co-design) be mounted to solve them?

Yes, in my opinion, programming systems and application performance portability are the most critical challenges for the HPC community today. We cannot expect the applications teams to rewrite major portions of their applications as every new hardware technology emerges. Our applications exist for years, if not decades. Our group has been investigating how to extend existing programming models, like OpenACC and the C language to include FPGAs and NVM, respectively. However, this problem is very complex and challenging; it will take our community working over years to propose and agree on solutions.

HPCWire: The 20-year window cited in the Panel title is, shall we say ambitious? Surprises will occur. From a more speculative perspective, what are some blue-sky ideas around supercomputing in the next two decades to consider. What technologies do you think have a chance – however slim or however barely worked upon now – to be disrupters?

Vetter: Hopefully, our PMES workshop and panel will help provide the SC community with a view into the potential benefits and challenges of some of these technologies: quantum, neuromorphic, silicon photonics, reconfigurable, etc. Countless numbers of smart people are working on solutions to these problems, but many technologies never mature to the level that they can be deployed effectively in a production environment. Nascent technologies like computing with carbon nanotubes, DNA, and various other nanotechnologies are very exciting, but they are also very immature. Like quantum and neuromorphic computing, researchers started work on the conceptual underpinnings for these technologies years ago; however, most of them have limitations in some key area, like manufacturing process, reliability, cost, etc. As the environment and assumptions change, we need to revisit these technologies to evaluate their possibilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More

February 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or at least, pull off the cloud HPC equivalent. As part of thei Read more…

By Oliver Peckham

ORNL Team Develops AI-based Cancer Text Mining Tool on Summit

February 13, 2020

A group of Oak Ridge National Laboratory researchers working on the Summit supercomputer has developed a new neural network tool for fast extraction of information from cancer pathology reports to speed research and clin Read more…

By John Russell

Nature Serves up Another Challenge to Quantum Computing?

February 13, 2020

Just when you thought it was safe to assume quantum computing – though distant – would eventually succumb to clever technology, another potentially confounding factor pops up. It’s the Heisenberg Limit (HL), close Read more…

By John Russell

Researchers Enlist Three Supercomputers to Apply Deep Learning to Extreme Weather

February 12, 2020

When it comes to extreme weather, an errant forecast can have serious effects. While advance warning can give people time to prepare for the weather as it did with the polar vortex last year, the absence of accurate adva Read more…

By Oliver Peckham

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops peak, HPC5 should easily crack the top ten fold of the next T Read more…

By Tiffany Trader

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Intel Stopping Nervana Development to Focus on Habana AI Chips

February 3, 2020

Just two months after acquiring Israeli AI chip start-up Habana Labs for $2 billion, Intel is stopping development of its existing Nervana neural network proces Read more…

By John Russell

Lise Supercomputer, Part of HLRN-IV, Begins Operations

January 29, 2020

The second phase of the build-out of HLRN-IV – the planned 16 peak-petaflops supercomputer serving the North-German Supercomputing Alliance (HLRN) – is unde Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This