The Fun Work of Technology Crystal Ball Gazing at SC16

By John Russell

November 10, 2016

On Monday at SC16 the 1st International Workshop on Post-Moore Era Supercomputing (PMES) will dive into the world of tomorrow. On Wednesday it will be followed by a distinguished panel, Post Moore’s Era Supercomputing in 20 Years, digging into some of the ideas explored at the workshop. These kinds of sessions are always fun and considering the panel participants, this one should be fascinating.

Panel moderator Jeffrey Vetter, leader of Oak Ridge National Laboratory’s Future Technology Group, says 41 papers were submitted for the workshop and eventually whittled down to 15. In this brief Q&A, Vetter sets the stage for what the workshop and panel hope to tackle and offers a few ideas of his own. Here’s the list of panelists:

HPCWire: Technology crystal ball gazing is always fun. What are the broad goals of the panel and what key issues you think need to be addressed? Maybe comment on the workshop and how it will inform panel and perhaps on why the specific panelists were selected (if appropriate).

Jeffrey Vetter: Our goal with this panel is to discuss the potential opportunities and challenges for Post Moore technologies from the perspective of the HPC community. HPC occupies a different portion of the design space than other options like enterprise or mobile.

The Post Moore’s Era Supercomputing (PMES) design space is very broad, and our PMES organizing committee decided to have very broad criteria for submissions in order to show a diversity of potential solutions. As a result, in our upcoming workshop, we have accepted papers on neuromorphic computing, adiabatic quantum computing, approximate computing, reconfigurable computing, software and performance modeling for PMES systems, and a few others. We hope that the audience can learn more about these topics, and make their own assessment of these technologies.

HPCWire: Quantum computing and neuromorphic computing are frequently discussed as game-changers moving forward. When you look at these two (sort of) emerging technologies how would you characterize their strengths, shortcomings, and needed advances to become key players going forward?

Jeffrey Vetter, ORNL Future Technologies Group
Jeffrey Vetter, ORNL Future Technologies Group

Vetter: Indeed. Quantum computing and neuromorphic computing have had recent successes. The concepts for these technologies have been around for two decades or more. Recently, we have seen some interesting experiments and progress.

Quantum computing has incredible possibilities, starting with Shor’s initial paper on factoring, and, now, with recent work in other algorithms. However, the goal of creating a scalable computing system from thousands (or more) of qubits remains an open research question. Manufacturing and controlling just a few qubits still has challenges like fine-grained quantum error correction, and building a very complex classical electronic control system to manage the qubits. Aside from the system itself, we need mission critical applications and programming concepts that can exploit this new technology.

Neuromorphic computing has seen tremendous progress in the past five years with systems like True North and SpiNNaker. Much of this work uses traditional CMOS digital electronics to emulate aspects of brain-inspired computing, like neurons and synapses. Even though these systems must be trained offline, they can have exceptional performance and energy efficiency. Recently, researchers have been exploring the use of memristors to implement this functionality, including online training, and they look promising. Two PMES papers illustrate these approaches.

HPCWire: How far can existing technology (CMOS and perhaps other process-friendly materials) take us? There are reports Samsung has beaten Intel to 10nm technology and at ISC16 Intel presenter Josh Fryman said the company is actively looking at “post 7 nm” technology.

Vetter: I believe that we will have CMOS devices indefinitely; it is an exceptional technology! In other words, even though device scaling will stop at some point with CMOS, I believe that it will continue to provide significant value, occupying an important rung on our technology ladder, until unseated by some disruptive technology.

A potentially more important consequence is that of economic and business strategies. The past year has been chaotic and illustrative as we have seen some of the largest semiconductor business deals ever: Softbank acquiring ARM, Qualcomm acquiring NXP, Intel acquiring Altera, Avago acquiring Broadcom, Broadcom acquiring Brocade, Western Digital acquiring SanDisk, etc. Many of these deals are being driven by economies of scale in design, engineering, and manufacturing costs. This may be the ultimate halting condition. It will be interesting to see who goes next.

HPCWire: Power is a huge issue. Supercomputing needs too much – rather amazing the brain does with 10-20W what SCs need MW for. How do you see that challenge being addressed and what are some of the emerging avenues that look promising?

Vetter: We are already experiencing an important transition in memory systems to non-volatile memory (NVM), due in part to cost and energy efficiency. Consumer and enterprise systems have been using NVM for quite some time, but 3D NAND flash is emerging to be the dominate memory type (including DRAM) available in nearly every computing architecture. Future NVM devices, like memristors, phase-change memory, and the Intel/Micron Xpoint memory, may have benefits over flash memory, which will allow engineers to integrate NVM even closer to the processor, up the memory hierarchy.

HPCWire: All this computing power needs to be able to do real work, something I know that is close to the heart of ORNL’s FTG team. What’s your take on the software challenge, in particular application software, and what/how should efforts (maybe co-design) be mounted to solve them?

Yes, in my opinion, programming systems and application performance portability are the most critical challenges for the HPC community today. We cannot expect the applications teams to rewrite major portions of their applications as every new hardware technology emerges. Our applications exist for years, if not decades. Our group has been investigating how to extend existing programming models, like OpenACC and the C language to include FPGAs and NVM, respectively. However, this problem is very complex and challenging; it will take our community working over years to propose and agree on solutions.

HPCWire: The 20-year window cited in the Panel title is, shall we say ambitious? Surprises will occur. From a more speculative perspective, what are some blue-sky ideas around supercomputing in the next two decades to consider. What technologies do you think have a chance – however slim or however barely worked upon now – to be disrupters?

Vetter: Hopefully, our PMES workshop and panel will help provide the SC community with a view into the potential benefits and challenges of some of these technologies: quantum, neuromorphic, silicon photonics, reconfigurable, etc. Countless numbers of smart people are working on solutions to these problems, but many technologies never mature to the level that they can be deployed effectively in a production environment. Nascent technologies like computing with carbon nanotubes, DNA, and various other nanotechnologies are very exciting, but they are also very immature. Like quantum and neuromorphic computing, researchers started work on the conceptual underpinnings for these technologies years ago; however, most of them have limitations in some key area, like manufacturing process, reliability, cost, etc. As the environment and assumptions change, we need to revisit these technologies to evaluate their possibilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Watch Nvidia’s GTC21 Keynote with Jensen Huang Livestreamed Here, Monday at 8:30am PT

April 9, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Argonne Supercomputing Supports Caterpillar Engine Design

April 8, 2021

Diesel fuels still account for nearly ten percent of all energy-related U.S. carbon emissions – most of them from heavy-duty vehicles like trucks and construction equipment. Energy efficiency is key to these machines, Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new training and inference servers that will power the upcoming Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

What’s New in HPC Research: Tundra, Fugaku, µHPC & More

April 6, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

RIKEN’s Ongoing COVID Research Includes New Vaccines, New Tests & More

April 6, 2021

RIKEN took the supercomputing world by storm last summer when it launched Fugaku – which became (and remains) the world’s most powerful supercomputer – ne Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

AI Systems Summit Keynote: Brace for System Level Heterogeneity Says de Supinski

April 1, 2021

Heterogeneous computing has quickly come to mean packing a couple of CPUs and one-or-many accelerators, mostly GPUs, onto the same node. Today, a one-such-node system has become the standard AI server offered by dozens of vendors. This is not to diminish the many advances... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire