The Fun Work of Technology Crystal Ball Gazing at SC16

By John Russell

November 10, 2016

On Monday at SC16 the 1st International Workshop on Post-Moore Era Supercomputing (PMES) will dive into the world of tomorrow. On Wednesday it will be followed by a distinguished panel, Post Moore’s Era Supercomputing in 20 Years, digging into some of the ideas explored at the workshop. These kinds of sessions are always fun and considering the panel participants, this one should be fascinating.

Panel moderator Jeffrey Vetter, leader of Oak Ridge National Laboratory’s Future Technology Group, says 41 papers were submitted for the workshop and eventually whittled down to 15. In this brief Q&A, Vetter sets the stage for what the workshop and panel hope to tackle and offers a few ideas of his own. Here’s the list of panelists:

HPCWire: Technology crystal ball gazing is always fun. What are the broad goals of the panel and what key issues you think need to be addressed? Maybe comment on the workshop and how it will inform panel and perhaps on why the specific panelists were selected (if appropriate).

Jeffrey Vetter: Our goal with this panel is to discuss the potential opportunities and challenges for Post Moore technologies from the perspective of the HPC community. HPC occupies a different portion of the design space than other options like enterprise or mobile.

The Post Moore’s Era Supercomputing (PMES) design space is very broad, and our PMES organizing committee decided to have very broad criteria for submissions in order to show a diversity of potential solutions. As a result, in our upcoming workshop, we have accepted papers on neuromorphic computing, adiabatic quantum computing, approximate computing, reconfigurable computing, software and performance modeling for PMES systems, and a few others. We hope that the audience can learn more about these topics, and make their own assessment of these technologies.

HPCWire: Quantum computing and neuromorphic computing are frequently discussed as game-changers moving forward. When you look at these two (sort of) emerging technologies how would you characterize their strengths, shortcomings, and needed advances to become key players going forward?

Jeffrey Vetter, ORNL Future Technologies Group
Jeffrey Vetter, ORNL Future Technologies Group

Vetter: Indeed. Quantum computing and neuromorphic computing have had recent successes. The concepts for these technologies have been around for two decades or more. Recently, we have seen some interesting experiments and progress.

Quantum computing has incredible possibilities, starting with Shor’s initial paper on factoring, and, now, with recent work in other algorithms. However, the goal of creating a scalable computing system from thousands (or more) of qubits remains an open research question. Manufacturing and controlling just a few qubits still has challenges like fine-grained quantum error correction, and building a very complex classical electronic control system to manage the qubits. Aside from the system itself, we need mission critical applications and programming concepts that can exploit this new technology.

Neuromorphic computing has seen tremendous progress in the past five years with systems like True North and SpiNNaker. Much of this work uses traditional CMOS digital electronics to emulate aspects of brain-inspired computing, like neurons and synapses. Even though these systems must be trained offline, they can have exceptional performance and energy efficiency. Recently, researchers have been exploring the use of memristors to implement this functionality, including online training, and they look promising. Two PMES papers illustrate these approaches.

HPCWire: How far can existing technology (CMOS and perhaps other process-friendly materials) take us? There are reports Samsung has beaten Intel to 10nm technology and at ISC16 Intel presenter Josh Fryman said the company is actively looking at “post 7 nm” technology.

Vetter: I believe that we will have CMOS devices indefinitely; it is an exceptional technology! In other words, even though device scaling will stop at some point with CMOS, I believe that it will continue to provide significant value, occupying an important rung on our technology ladder, until unseated by some disruptive technology.

A potentially more important consequence is that of economic and business strategies. The past year has been chaotic and illustrative as we have seen some of the largest semiconductor business deals ever: Softbank acquiring ARM, Qualcomm acquiring NXP, Intel acquiring Altera, Avago acquiring Broadcom, Broadcom acquiring Brocade, Western Digital acquiring SanDisk, etc. Many of these deals are being driven by economies of scale in design, engineering, and manufacturing costs. This may be the ultimate halting condition. It will be interesting to see who goes next.

HPCWire: Power is a huge issue. Supercomputing needs too much – rather amazing the brain does with 10-20W what SCs need MW for. How do you see that challenge being addressed and what are some of the emerging avenues that look promising?

Vetter: We are already experiencing an important transition in memory systems to non-volatile memory (NVM), due in part to cost and energy efficiency. Consumer and enterprise systems have been using NVM for quite some time, but 3D NAND flash is emerging to be the dominate memory type (including DRAM) available in nearly every computing architecture. Future NVM devices, like memristors, phase-change memory, and the Intel/Micron Xpoint memory, may have benefits over flash memory, which will allow engineers to integrate NVM even closer to the processor, up the memory hierarchy.

HPCWire: All this computing power needs to be able to do real work, something I know that is close to the heart of ORNL’s FTG team. What’s your take on the software challenge, in particular application software, and what/how should efforts (maybe co-design) be mounted to solve them?

Yes, in my opinion, programming systems and application performance portability are the most critical challenges for the HPC community today. We cannot expect the applications teams to rewrite major portions of their applications as every new hardware technology emerges. Our applications exist for years, if not decades. Our group has been investigating how to extend existing programming models, like OpenACC and the C language to include FPGAs and NVM, respectively. However, this problem is very complex and challenging; it will take our community working over years to propose and agree on solutions.

HPCWire: The 20-year window cited in the Panel title is, shall we say ambitious? Surprises will occur. From a more speculative perspective, what are some blue-sky ideas around supercomputing in the next two decades to consider. What technologies do you think have a chance – however slim or however barely worked upon now – to be disrupters?

Vetter: Hopefully, our PMES workshop and panel will help provide the SC community with a view into the potential benefits and challenges of some of these technologies: quantum, neuromorphic, silicon photonics, reconfigurable, etc. Countless numbers of smart people are working on solutions to these problems, but many technologies never mature to the level that they can be deployed effectively in a production environment. Nascent technologies like computing with carbon nanotubes, DNA, and various other nanotechnologies are very exciting, but they are also very immature. Like quantum and neuromorphic computing, researchers started work on the conceptual underpinnings for these technologies years ago; however, most of them have limitations in some key area, like manufacturing process, reliability, cost, etc. As the environment and assumptions change, we need to revisit these technologies to evaluate their possibilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire