The Fun Work of Technology Crystal Ball Gazing at SC16

By John Russell

November 10, 2016

On Monday at SC16 the 1st International Workshop on Post-Moore Era Supercomputing (PMES) will dive into the world of tomorrow. On Wednesday it will be followed by a distinguished panel, Post Moore’s Era Supercomputing in 20 Years, digging into some of the ideas explored at the workshop. These kinds of sessions are always fun and considering the panel participants, this one should be fascinating.

Panel moderator Jeffrey Vetter, leader of Oak Ridge National Laboratory’s Future Technology Group, says 41 papers were submitted for the workshop and eventually whittled down to 15. In this brief Q&A, Vetter sets the stage for what the workshop and panel hope to tackle and offers a few ideas of his own. Here’s the list of panelists:

HPCWire: Technology crystal ball gazing is always fun. What are the broad goals of the panel and what key issues you think need to be addressed? Maybe comment on the workshop and how it will inform panel and perhaps on why the specific panelists were selected (if appropriate).

Jeffrey Vetter: Our goal with this panel is to discuss the potential opportunities and challenges for Post Moore technologies from the perspective of the HPC community. HPC occupies a different portion of the design space than other options like enterprise or mobile.

The Post Moore’s Era Supercomputing (PMES) design space is very broad, and our PMES organizing committee decided to have very broad criteria for submissions in order to show a diversity of potential solutions. As a result, in our upcoming workshop, we have accepted papers on neuromorphic computing, adiabatic quantum computing, approximate computing, reconfigurable computing, software and performance modeling for PMES systems, and a few others. We hope that the audience can learn more about these topics, and make their own assessment of these technologies.

HPCWire: Quantum computing and neuromorphic computing are frequently discussed as game-changers moving forward. When you look at these two (sort of) emerging technologies how would you characterize their strengths, shortcomings, and needed advances to become key players going forward?

Jeffrey Vetter, ORNL Future Technologies Group
Jeffrey Vetter, ORNL Future Technologies Group

Vetter: Indeed. Quantum computing and neuromorphic computing have had recent successes. The concepts for these technologies have been around for two decades or more. Recently, we have seen some interesting experiments and progress.

Quantum computing has incredible possibilities, starting with Shor’s initial paper on factoring, and, now, with recent work in other algorithms. However, the goal of creating a scalable computing system from thousands (or more) of qubits remains an open research question. Manufacturing and controlling just a few qubits still has challenges like fine-grained quantum error correction, and building a very complex classical electronic control system to manage the qubits. Aside from the system itself, we need mission critical applications and programming concepts that can exploit this new technology.

Neuromorphic computing has seen tremendous progress in the past five years with systems like True North and SpiNNaker. Much of this work uses traditional CMOS digital electronics to emulate aspects of brain-inspired computing, like neurons and synapses. Even though these systems must be trained offline, they can have exceptional performance and energy efficiency. Recently, researchers have been exploring the use of memristors to implement this functionality, including online training, and they look promising. Two PMES papers illustrate these approaches.

HPCWire: How far can existing technology (CMOS and perhaps other process-friendly materials) take us? There are reports Samsung has beaten Intel to 10nm technology and at ISC16 Intel presenter Josh Fryman said the company is actively looking at “post 7 nm” technology.

Vetter: I believe that we will have CMOS devices indefinitely; it is an exceptional technology! In other words, even though device scaling will stop at some point with CMOS, I believe that it will continue to provide significant value, occupying an important rung on our technology ladder, until unseated by some disruptive technology.

A potentially more important consequence is that of economic and business strategies. The past year has been chaotic and illustrative as we have seen some of the largest semiconductor business deals ever: Softbank acquiring ARM, Qualcomm acquiring NXP, Intel acquiring Altera, Avago acquiring Broadcom, Broadcom acquiring Brocade, Western Digital acquiring SanDisk, etc. Many of these deals are being driven by economies of scale in design, engineering, and manufacturing costs. This may be the ultimate halting condition. It will be interesting to see who goes next.

HPCWire: Power is a huge issue. Supercomputing needs too much – rather amazing the brain does with 10-20W what SCs need MW for. How do you see that challenge being addressed and what are some of the emerging avenues that look promising?

Vetter: We are already experiencing an important transition in memory systems to non-volatile memory (NVM), due in part to cost and energy efficiency. Consumer and enterprise systems have been using NVM for quite some time, but 3D NAND flash is emerging to be the dominate memory type (including DRAM) available in nearly every computing architecture. Future NVM devices, like memristors, phase-change memory, and the Intel/Micron Xpoint memory, may have benefits over flash memory, which will allow engineers to integrate NVM even closer to the processor, up the memory hierarchy.

HPCWire: All this computing power needs to be able to do real work, something I know that is close to the heart of ORNL’s FTG team. What’s your take on the software challenge, in particular application software, and what/how should efforts (maybe co-design) be mounted to solve them?

Yes, in my opinion, programming systems and application performance portability are the most critical challenges for the HPC community today. We cannot expect the applications teams to rewrite major portions of their applications as every new hardware technology emerges. Our applications exist for years, if not decades. Our group has been investigating how to extend existing programming models, like OpenACC and the C language to include FPGAs and NVM, respectively. However, this problem is very complex and challenging; it will take our community working over years to propose and agree on solutions.

HPCWire: The 20-year window cited in the Panel title is, shall we say ambitious? Surprises will occur. From a more speculative perspective, what are some blue-sky ideas around supercomputing in the next two decades to consider. What technologies do you think have a chance – however slim or however barely worked upon now – to be disrupters?

Vetter: Hopefully, our PMES workshop and panel will help provide the SC community with a view into the potential benefits and challenges of some of these technologies: quantum, neuromorphic, silicon photonics, reconfigurable, etc. Countless numbers of smart people are working on solutions to these problems, but many technologies never mature to the level that they can be deployed effectively in a production environment. Nascent technologies like computing with carbon nanotubes, DNA, and various other nanotechnologies are very exciting, but they are also very immature. Like quantum and neuromorphic computing, researchers started work on the conceptual underpinnings for these technologies years ago; however, most of them have limitations in some key area, like manufacturing process, reliability, cost, etc. As the environment and assumptions change, we need to revisit these technologies to evaluate their possibilities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire