Moving Just to Exascale or Preparing for Sustained Scaling?

By Thomas Sterling

November 11, 2016

Editor’s Note: In this guest article, Thomas Sterling, director of the Center for Research in Extreme Scale Technologies and Professor of Electrical Engineering” at the “Department of Intelligent Systems Engineering” at Indiana University, wonders whether the quest for exascale is in danger of underachieving even if it hits the literal goal. A broader vision and approach, he suggests, is needed. He explores how runtime system software, for example, might play a role in helping the race for exascale move beyond simple von Neumann incrementalism and tackle more substantive changes that enhance scalability more generally.

Sterling has three events at SC this year, his talk HPC Runtime System Software for Asynchronous Multi-Tasking (Thurs.), participation on the panel HPC Workforce Development: How Do We Find Them, Recruit Them, and Teach Them to Be Today’s Practitioners and Tomorrow’s Leaders? (Tues.), and a keynote address at the 2nd International Workshop on Extreme Scale Programming Models and Middleware (Fri.) – John Russell

Forward looking thinkers and programs are setting the course of the nation and internationally towards the acclaimed achievement of exascale computing. The value to important application domains from multi-physics simulation to societal data analytics and the wide range of problems encompassed hardly needs explaining to this community. Even the criterion of exascale – which is poorly defined at best and need not be dwelt upon as a qualitative sense of the goal or goals associated with the rubric of “exascale” – is sufficient to challenge hardware and software engineers as well as end users to push technologies and methods, at least incrementally, in the direction of orders of magnitude gain beyond the 2015 baselines.

But there is a significant difference between forcing systems capability towards an admittedly arbitrary Rmax number and setting a long-term path across the entire expanse of what might be characterized as the “exascale performance regime” spanning the 1000X computing frontier from Exaops to Zettaops. There is a distinct difference in approach between dragging the past through patchwork incrementalism to achieve the shorter term goal at minimum cost and apparent convenience versus setting the new course of computing system class through which a dramatic range of computing may be traversed over time (e.g., through 2035). To achieve the latter demands the identification and formulation of untapped principles based on opportunities consistent with the physics of emerging technologies and responsive to their limiting factors. Some such principles may extend back decades to assumptions that have gone largely unquestioned to this day even though the underlying motivations for these have largely dispersed. Others may have been recognized or even applied but within the wrong contexts to be profitable for HPC. Two such domains of pursuit briefly considered in this article during the week of SC16 are the emergent application and implementation of runtime system software and superseding reliance on von Neumann derivatives for architecture.

This discussion is not to be considered as a criticism of what is being planned for immediate nationally driven programs such as the DOE Exascale Computing Project (ECP). Rather it is intended to note, as many have, that the changing conditions related to Moore’s law and power constrained clock rates as well as poor efficiency and scalability of at least strong-scaled problems today demand renewed research beyond the short-term and conventional. As our nation and the world organizes to develop systems capable of exascale computing aligned with the National Strategic Computing Initiative in the areas both of numeric and data analytics solutions, hard choices are being made in terms of technical, conceptual and programmatic approaches and where research investments if any are to be made. Practical considerations include limited budgets, sustained continuity of mission critical legacy codes, risk avoidance and mitigation, and subjective biases towards familiar programming methods and industry architecture roadmaps. These pragmatic concerns are yielding somewhat conservative plans to achieving still yet ill-defined metrics of exascale rather than establishing the launch vector towards the entire performance regime of the next four orders of magnitude. From the outside peering into the sometimes opaque planning offices, it appears that research funding is being sacrificed in the name of risk minimization and “curiosity driven research” especially in the area of systems.To stimulate a renewal of more advanced exploration needed to achieve better than the bare minimum of performance goals, these comments briefly discuss two areas of consideration: 1) the emergence of runtime systems in support of improved efficiency and scalability, and 2) unquestioned assumptions that continue to inhibit progress.

Runtime system software is being explored by a number of research teams nationally and internationally to exploit compute time information about application state and system usage for dynamic and adaptive introspective control of resource management and task scheduling. The potential of runtime systems is to achieve superior resource utilization, load balancing, data migration and affinity, and parallelism discovery. At its core, the impact of runtime system software is to change from conventional static practices to dynamic adaptive execution control. Depending on the specifics of the runtime software under consideration, a number of separate techniques that have been independently pursued over many years may be integrated within the runtime such as global address space, over decomposition, message-driven computation, multiple threading, and dataflow synchronization among other concepts. Their incorporation promises to reduce programmer burden and deliver performance portability across systems of different types, scales and generations. However, advanced scalable runtime systems are experimental and impose additional problems such as increased system software complexity, added overheads, and uncertainty about programming interfaces, support for legacy codes, and workload interoperability. Further, early results suggest that not all applications will benefit significantly through runtime support, with instances of performance reduction observed in certain cases.

Exploration of the set of opportunities for guided rather than ballistic computation offered by runtimes is found in such work at Charm++ at UIUC, OCR at Rice, HPX at LSU and ZTH, HPX-5 at Indiana University, DARMA at SNL, Legion at Stanford, and other projects in Europe and Japan. The lack of uniformity among the distinct approaches has inhibited application experiments and rapid optimization of system software resulting in calls for community standardization. While it is easy to sympathize with this, early standardization may be premature as experience with best practices is at its inchoate phase, such standards may be counterproductive, and actually impede rather than expedite progress. Focusing solely on runtimes without combined considerations of programming models, compiler roles, OS support, and even architecture implications may prove too narrow and also produce inadequate results. This has led the author in other contexts to propose a holistic approach based on full parallel execution models (e.g., ParalleX) to establish the mutual roles and responsibilities of all of the hardware and software layers, their interrelationships and their interfaces.

This strategy, while demonstrably effective based on variants of the communicating sequential processes model largely through MPI, had not been widely adopted in the creation of a new execution model that could provide the framework for effective exploitation of possible future runtime systems. It is the opinion of some that this will be necessary to break into the post Moore’s law era. Others, of course, point out that we have managed to struggle along without such revolutionary changes for two dozen years and such approaches would prove disruptive. There is some truth to both claims. Much more discussion on the details and issues of runtime system from trans-exascale computing will be presented in a future article. But a second aspect of achieving computing beyond exascale should be introduced as well: the opportunity for new hardware architectures even beyond the current roadmaps of the vendors.

Close examination exposes a litany of assumptions that have dominated HPC design and operation for decades. While at one time these constituted winning strategies, now they are counter to critical path objective functions. The actual list is long but here only a few under the topic of von Neumann derivatives will be considered. Essentially all commercially viable HPC system architectures over the last six decades and more have been derivative of the von Neumann architecture concept. From the original vacuum tube machines of the late 40’s and 50’s to the transistor machines of the 60’s, the SSI/MSI computers of the 70’s, the LSI systems of the 80’s, the VLSI systems of the 90’s, and the multicore chips of the last decade, the core elements reflect the basic principles of sequential instruction issue, the separation of logic from main memory (referred to as the “von Neumann bottleneck”, and the emphasis on ALU/FPU utilization as the primary point of optimization. Even with the many forms of parallelism that have been exploited as technology permitted such as pipelined execution, vectors, SIMD-arrays, and multiprocessing, von Neumann has been at the heart of execution control manifest in hardware, programming models and interfaces, and algorithms.

Each of these assumptions ingrained in current designs can be reconsidered to address the fundamental performance parameters that ultimately determine efficiency and scalability. These factors include the need to expose and exploit parallelism to overcome starvation of resources, particularly since the beginning of the multicore era in 2005. Latency effects have forced a conventional approach of deep memory hierarchies that rely on locality from data reuse. Overhead of software control bound the granularity of parallel tasks and therefore parallelism even as it wastes time and energy. And contention for shared resources, both physical and logical, impose bottlenecks and that may block precious resources. Those resources are no longer the FPUs but rather the means of data movement generally and into and out of the main memory in particular.

Research in architecture outside the mainstream has a long history but commercial competitive successes of the microprocessor epoch have hindered other than incremental approaches of improvement, the use of multi/many-core sockets, and GPUs. Nonetheless, with the flat-lining of so many important growth parameters, alternative architecture approaches that preclude the unquestioned assumptions presented earlier may have to be reconsidered. One is PIM or processor in memory that has its antecedents back to 1990 where the challenges of latency, parallelism and bandwidth may all be addressed. Here logic and memory blocks are integrated on the same semiconductor die to improve all these factors. Dataflow that extends back prior to 1980 provides important unifying lightweight parallelism control principles. While early architecture proposals failed to address the true implications of technology trends, the semantics are powerful and may lead to a new generation of managing multi-level granularity parallelism in the presence of asynchrony and latency mitigation as well as starvation. Finally, perhaps even a more remarkable suggestion is the examination of a class of cellular automata that has its genesis in 1949 and may be ideal for nano-scale hardware architecture for massive parallelism emphasizing memory bandwidth and making FPU capability a high availability rather than high utilization resource.

Here has only been touched on a space of future considerations and the potential for exploring alternatives to conventional assumptions and practices. There are no promises of superior capability but only of possibilities as yet unexplored under current technology trends. In the last half century I’ve been flying on commercial jet airliners, I have always been limited to subsonic speeds. Let’s hope we are not approaching a similar asymptote in HPC merely because of our failure to explore unknown approaches due to shortsighted vision or funding.

Author Bio

rp_Sterling-Thomas-2014-09-300x300.jpgDr. Thomas Sterling is Professor of Intelligent Systems Engineering at the Indiana University School of Informatics and Computing and Director of the Center for Research in Extreme Scale Technologies (CREST). Since receiving his Ph.D. from MIT in 1984 as a Hertz Fellow, Dr. Sterling has engaged in applied research in fields associated with parallel computing system structures, semantics, and operation in industry, government labs, and academia. Dr. Sterling is best known as the “father of Beowulf” for his pioneering research in commodity/Linux cluster computing, for which he shared the Gordon Bell Prize in 1997. He is the co-author of six books and holds six patents. He was the recipient of the 2013 Vanguard Award. In 2014, he was named a fellow of the American Association for the Advancement of Science.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This