US, China Vie for Supercomputing Supremacy

By Tiffany Trader

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Even without the benefit of another mega-system, China is still a force to be reckoned with; the number one and number two machines alone, both Chinese, provide the list with nearly 19 percent of its total FLOPS. We also see the arrival of Knights Landing systems, a continued dip in accelerator-based systems, and InfiniBand losing ground to Ethernet, as non-traditional “supercomputers” from the cloud and Web 2.0 sphere continue to enter the list.

Before we unzip these trends further, let’s jump to the top of the list, where there are two new additions. Joining the top ten club at number five with 14 petaflops is the NERSC Cori supercomputer, and sliding in at number six is Japan’s new 13.6 petaflops Oakforest-PACS supercomputer. Both Cori, the Cray XC40 system installed at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC), and Oakforest-PACS supercomputer, a Fujitsu PRIMERGY CX1640 M1 cluster operating at Japan’s Joint Center for Advanced High Performance Computing (JCAHPC), rely on the Intel “Knights Landing” Xeon Phi 7250, a 68-core processor that delivers just under 3 peak teraflops of performance.

The brand-new Theta supercomputer, deployed at Argonne National Laboratory ahead of the larger Aurora install, is also using KNL parts, specifically the 64-core Intel Xeon Phi 7230. Theta provides 5.1 Linpack petaflops, earning it the 18th spot on this list. All told, there are 10 systems using Xeon Phi as the main processing unit.

nov-2016-top500-top-10

There are also some noteworthy “internal systems” debuting on the list. At number 28 with 3.3 petaflops Linpack (4.9 petaflops peak) is the the DGX Saturn V from Nvidia, powered by NVLink’d Pascal P100 GPUs. Constructed with 125 DGX-1s, Saturn V is the most energy-efficient system on the list, grabbing the number one spot on the Green500 list with a 8.17 gigaflops/watt rating. That’s a 42 percent improvement from the 6.67 gigaflops/watt delivered by the most efficient machine on previous TOP500 list. Nvidia has had this system in development since GTC16 in March. In June at ISC 2016, Marc Hamilton told us the machine was being used by millions of lines of codes at Nvidia. The graphics chips maker indicated that its automotive teams were its heaviest users.

nvidia_dgx_saturnv-800x
Nvidia’s DGX Saturn V

“In this new style of computing you don’t write if/then/else code to recognize a cat or a stop sign or a pedestrian, you’re feeding a lot of data into a deep neural network and adjusting the network,” Hamilton said. “We have today engineers at Nvidia on our automotive DriveWorks software team, and that’s what they’re doing, rather than writing a bunch of if/then/else code in C they’re getting a bunch of data from a car, either simulated or real, they’re piping it into a deep neural network running on the DGX-1 box – so getting the results in 2 hours instead of 24 hours – they’re adjusting the networking, fine-tuning the network and running it again.”

The number two greenest super is also using P100 GPUs (the only other machine to do so, although to be precise, these are the PCIe variants) — we’re talking about Piz Daint (installed at the Swiss National Supercomputing Centre), which touts an impressive 7.45 gigaflops/watt. Piz Daint recently received a massive 3.5 petaflops P100 infusion that allowed it to hold onto its number 8 spot on the TOP500 despite two new entrants above it (Cori and Oakforest-PACS).

Penguin Computing qualified its in-house machine, Topaz, for the new list achieving a 169th ranking with 760 teraflops (Linpack). The Tundra Extreme Scale machine uses Xeon E5-2695v4 processors and Intel Omni-Path architecture.

Dell EMC is also debuting an on-site machine, Zenith, installed at the Dell HPC Innovation labs in Austin, Texas. Ranked at 372 on the list, Zenith is a 451-teraflops (Linpack) machine built with Dell PowerEdge C6320 and PowerEdge R630 servers using Xeon E5-2697v4 processors and the Intel Omni-Path interconnect. Dell EMC will also be unveiling a companion system (not yet submitted to the TOP500), Rattler, that has 80 C6320 PowerEdge nodes fully connected with EDR. Pascal GPUs will be added soon, according to Dell EMC’s Jim Ganthier, “since that is [the GPU] most customers are interested in trying out.”

The China-US Tally

On the previous edition of the TOP500, released at ISC in June, China had overtaken the United States in both system share and performance share. With this list, the US is now matched with China at 171 systems apiece. As the list authors note, in terms of total performance share, the US now holds the narrowest of leads, 33.9 percent compared to runner-up China’s 33.3 percent.

The number one and two systems — TaihuLight and Tianhe-2 respectively, are Chinese with the 93-petaflops “homegrown” TaihuLight machine commanding a 5.3X FLOPS lead over the fastest US system, the 17.6-petaflops Titan, ranked number three. Although the US has recaptured a bit of ground since the June list, if you take system share, performance share and top-of-the-list status as three primary dimensions of TOP500 leadership, China is in the stronger position.

One can rightly question the relevance of machine “scores” and list standing as the Linpack benchmark becomes less relevant as a stand-in for performance on modern science and engineering applications, but it’s hard to deny the galvanizing impact of a global-scale competition. After all, it’s the supercomputing race that captures the mass attention span and you can’t have a race without a way of gauging who’s ahead.

Last year’s SC (2015) was something of TOP500 coming out party for China. China’s list share went from 37 systems in June 2015 to 109 systems in November 2015 — and then to 168 systems in June 2016. In the same timeframe, US system share fell from 233 to 199 to 165. As Intersect360 Research CEO Addison Snell has remarked, it wasn’t so much that China discovered supercomputing as it discovered the TOP500 list. In other words, many of these machines were older systems newly earmarked for inclusion onto the list.

The US has a major supercomputing refresh planned for 2018-2019 with the CORAL systems coming online, so there will be list churn in the coming years with some jockeying for position, but China won’t be standing still. In addition to the Wuxi supercomputer, China has reported that it will stand up one or two more big systems in the neighborhood of 100-petaflops each. The status of those systems isn’t completely clear, but China has disclosed that they are building three prototype machines ramping up to their 2020 exascale target. The EU and Japan aren’t expecting to reach exascale until at least a year or two after that with the US on track for 2023.

After US and China, Germany ranks third on the latest TOP500 list with 32 systems, followed by Japan with 27, France with 20, and the UK with 17. A year ago, Japan had 37, Germany had 33, and both France and the UK had 18.

top500-nov-2016-vendor-tree-map-rmax
Nov. 2016 TOP500 vendor tree map (% of total list performance)

Looking at the vendor landscape, Cray has staked out the highest share of total list performance at 21.3 percent up from 19.9 percent. The massive Sunway TaihuLight system claims 13.8 percent of the total installed performance, which gives developer NRCPC second-place bragging rights. HPE is in third place with 9.8 percent, down from 12.9 percent six months ago, but will pick up another 6 percent from SGI systems. IBM and Lenovo are tied for fourth place with 8.8 percent share each. Thanks to Tianhe-2 and Tianhe-1A, NUDT contributes 5.8 percent of the total performance of the list, down from 9.2 percent.

By system share, HPE is on top with 112 systems (22.4 percent). HPE will also gain 28 systems from the SGI acquisition, bringing its grand total to 140 machines. In second place is Lenovo with 92 systems. Cray, in third, now has 56 systems, down from 69 systems six month ago. Sugon is fourth with 47 and IBM is fifth with 33. No new IBM system were introduced in this list.

The aggregate performance of all 500 computers on the list stands at 672 petaflops, a 60 percent increase from a year ago. As long as the growth rate stays above 50 percent, the list will reach a total performance of >1,000 petaflops (1 exaflops) one year from now. The 60 percent rate represents a slight uptick in the year over year growth. The growth of the average performance of all systems in the list slowed in 2008 and again in 2013, dropping to around 55 percent per year. Prior to 2008, aggregate system performance was increasing by about 90 percent per year.

sc16-performance-development-trajectories
Nov. 2016 TOP500 Performance Development

The aggregate performance of the top ten machines is 226 petaflops. 117 systems have cracked the petaflops ceiling, compared with 95 machines on the previous list. The admission point for the TOP100 is currently 1.07 petaflops (up from 958 teraflops). The bar for entry onto the list has been raised to 349.3 Linpack teraflops up from 285.9 teraflops six months ago.

sc16-accelerators-coprocessors-2006-2016
      Source: Nov. 2016 TOP500

Other highlights from the 48th TOP500 list:

  • A total of 462 systems (92.4 percent) are now using Intel processors, slightly up from 91 percent six months ago.
  • The share of IBM Power processors is now at 22 systems, down from 23 systems six months ago.
  • The AMD Opteron family is used in 7 systems, down from 13 systems on the previous list.
  • A total of 86 systems on the list are using accelerator/co-processor technology, down from 93 on June 2016. Sixty (60) of these use NVIDIA chips, 21 systems with Intel Xeon Phi technology (as co-processors), one uses ATI Radeon, and one uses PEZY technology. Three systems use a combination of Nvidia and Intel Xeon Phi accelerators/co-processors. 10 Systems now use Xeon Phi as the main processing unit.
  • InfiniBand technology is now found on 187 systems, down from 205 systems, and is now the second most-used internal system interconnect technology. Gigabit Ethernet is now at 206 systems down from 218 systems, in large part thanks to 177 systems now using 10G interfaces.
  • Intel Omni-Path technology which made its first appearance six months ago with eight systems is now at 28 systems and is used in the No. 6 system, Oakforest-PACS.

We’ll follow up with more insights and analysis from the TOP500 BoF, which takes place Tuesday night from 5:15-7pm at the Salt Palace Convention Center in Salt Lake City.

For now, the TOP500 compilers — Erich Strohmaier and Horst Simon of Lawrence Berkeley National Laboratory; Jack Dongarra of the University of Tennessee, Knoxville; and Martin Meuer of ISC Group — have put together this poster, which provides a view into key performance trends, as well as the evolving architecture and chip technology landscapes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This