US, China Vie for Supercomputing Supremacy

By Tiffany Trader

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Even without the benefit of another mega-system, China is still a force to be reckoned with; the number one and number two machines alone, both Chinese, provide the list with nearly 19 percent of its total FLOPS. We also see the arrival of Knights Landing systems, a continued dip in accelerator-based systems, and InfiniBand losing ground to Ethernet, as non-traditional “supercomputers” from the cloud and Web 2.0 sphere continue to enter the list.

Before we unzip these trends further, let’s jump to the top of the list, where there are two new additions. Joining the top ten club at number five with 14 petaflops is the NERSC Cori supercomputer, and sliding in at number six is Japan’s new 13.6 petaflops Oakforest-PACS supercomputer. Both Cori, the Cray XC40 system installed at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC), and Oakforest-PACS supercomputer, a Fujitsu PRIMERGY CX1640 M1 cluster operating at Japan’s Joint Center for Advanced High Performance Computing (JCAHPC), rely on the Intel “Knights Landing” Xeon Phi 7250, a 68-core processor that delivers just under 3 peak teraflops of performance.

The brand-new Theta supercomputer, deployed at Argonne National Laboratory ahead of the larger Aurora install, is also using KNL parts, specifically the 64-core Intel Xeon Phi 7230. Theta provides 5.1 Linpack petaflops, earning it the 18th spot on this list. All told, there are 10 systems using Xeon Phi as the main processing unit.

nov-2016-top500-top-10

There are also some noteworthy “internal systems” debuting on the list. At number 28 with 3.3 petaflops Linpack (4.9 petaflops peak) is the the DGX Saturn V from Nvidia, powered by NVLink’d Pascal P100 GPUs. Constructed with 125 DGX-1s, Saturn V is the most energy-efficient system on the list, grabbing the number one spot on the Green500 list with a 8.17 gigaflops/watt rating. That’s a 42 percent improvement from the 6.67 gigaflops/watt delivered by the most efficient machine on previous TOP500 list. Nvidia has had this system in development since GTC16 in March. In June at ISC 2016, Marc Hamilton told us the machine was being used by millions of lines of codes at Nvidia. The graphics chips maker indicated that its automotive teams were its heaviest users.

nvidia_dgx_saturnv-800x
Nvidia’s DGX Saturn V

“In this new style of computing you don’t write if/then/else code to recognize a cat or a stop sign or a pedestrian, you’re feeding a lot of data into a deep neural network and adjusting the network,” Hamilton said. “We have today engineers at Nvidia on our automotive DriveWorks software team, and that’s what they’re doing, rather than writing a bunch of if/then/else code in C they’re getting a bunch of data from a car, either simulated or real, they’re piping it into a deep neural network running on the DGX-1 box – so getting the results in 2 hours instead of 24 hours – they’re adjusting the networking, fine-tuning the network and running it again.”

The number two greenest super is also using P100 GPUs (the only other machine to do so, although to be precise, these are the PCIe variants) — we’re talking about Piz Daint (installed at the Swiss National Supercomputing Centre), which touts an impressive 7.45 gigaflops/watt. Piz Daint recently received a massive 3.5 petaflops P100 infusion that allowed it to hold onto its number 8 spot on the TOP500 despite two new entrants above it (Cori and Oakforest-PACS).

Penguin Computing qualified its in-house machine, Topaz, for the new list achieving a 169th ranking with 760 teraflops (Linpack). The Tundra Extreme Scale machine uses Xeon E5-2695v4 processors and Intel Omni-Path architecture.

Dell EMC is also debuting an on-site machine, Zenith, installed at the Dell HPC Innovation labs in Austin, Texas. Ranked at 372 on the list, Zenith is a 451-teraflops (Linpack) machine built with Dell PowerEdge C6320 and PowerEdge R630 servers using Xeon E5-2697v4 processors and the Intel Omni-Path interconnect. Dell EMC will also be unveiling a companion system (not yet submitted to the TOP500), Rattler, that has 80 C6320 PowerEdge nodes fully connected with EDR. Pascal GPUs will be added soon, according to Dell EMC’s Jim Ganthier, “since that is [the GPU] most customers are interested in trying out.”

The China-US Tally

On the previous edition of the TOP500, released at ISC in June, China had overtaken the United States in both system share and performance share. With this list, the US is now matched with China at 171 systems apiece. As the list authors note, in terms of total performance share, the US now holds the narrowest of leads, 33.9 percent compared to runner-up China’s 33.3 percent.

The number one and two systems — TaihuLight and Tianhe-2 respectively, are Chinese with the 93-petaflops “homegrown” TaihuLight machine commanding a 5.3X FLOPS lead over the fastest US system, the 17.6-petaflops Titan, ranked number three. Although the US has recaptured a bit of ground since the June list, if you take system share, performance share and top-of-the-list status as three primary dimensions of TOP500 leadership, China is in the stronger position.

One can rightly question the relevance of machine “scores” and list standing as the Linpack benchmark becomes less relevant as a stand-in for performance on modern science and engineering applications, but it’s hard to deny the galvanizing impact of a global-scale competition. After all, it’s the supercomputing race that captures the mass attention span and you can’t have a race without a way of gauging who’s ahead.

Last year’s SC (2015) was something of TOP500 coming out party for China. China’s list share went from 37 systems in June 2015 to 109 systems in November 2015 — and then to 168 systems in June 2016. In the same timeframe, US system share fell from 233 to 199 to 165. As Intersect360 Research CEO Addison Snell has remarked, it wasn’t so much that China discovered supercomputing as it discovered the TOP500 list. In other words, many of these machines were older systems newly earmarked for inclusion onto the list.

The US has a major supercomputing refresh planned for 2018-2019 with the CORAL systems coming online, so there will be list churn in the coming years with some jockeying for position, but China won’t be standing still. In addition to the Wuxi supercomputer, China has reported that it will stand up one or two more big systems in the neighborhood of 100-petaflops each. The status of those systems isn’t completely clear, but China has disclosed that they are building three prototype machines ramping up to their 2020 exascale target. The EU and Japan aren’t expecting to reach exascale until at least a year or two after that with the US on track for 2023.

After US and China, Germany ranks third on the latest TOP500 list with 32 systems, followed by Japan with 27, France with 20, and the UK with 17. A year ago, Japan had 37, Germany had 33, and both France and the UK had 18.

top500-nov-2016-vendor-tree-map-rmax
Nov. 2016 TOP500 vendor tree map (% of total list performance)

Looking at the vendor landscape, Cray has staked out the highest share of total list performance at 21.3 percent up from 19.9 percent. The massive Sunway TaihuLight system claims 13.8 percent of the total installed performance, which gives developer NRCPC second-place bragging rights. HPE is in third place with 9.8 percent, down from 12.9 percent six months ago, but will pick up another 6 percent from SGI systems. IBM and Lenovo are tied for fourth place with 8.8 percent share each. Thanks to Tianhe-2 and Tianhe-1A, NUDT contributes 5.8 percent of the total performance of the list, down from 9.2 percent.

By system share, HPE is on top with 112 systems (22.4 percent). HPE will also gain 28 systems from the SGI acquisition, bringing its grand total to 140 machines. In second place is Lenovo with 92 systems. Cray, in third, now has 56 systems, down from 69 systems six month ago. Sugon is fourth with 47 and IBM is fifth with 33. No new IBM system were introduced in this list.

The aggregate performance of all 500 computers on the list stands at 672 petaflops, a 60 percent increase from a year ago. As long as the growth rate stays above 50 percent, the list will reach a total performance of >1,000 petaflops (1 exaflops) one year from now. The 60 percent rate represents a slight uptick in the year over year growth. The growth of the average performance of all systems in the list slowed in 2008 and again in 2013, dropping to around 55 percent per year. Prior to 2008, aggregate system performance was increasing by about 90 percent per year.

sc16-performance-development-trajectories
Nov. 2016 TOP500 Performance Development

The aggregate performance of the top ten machines is 226 petaflops. 117 systems have cracked the petaflops ceiling, compared with 95 machines on the previous list. The admission point for the TOP100 is currently 1.07 petaflops (up from 958 teraflops). The bar for entry onto the list has been raised to 349.3 Linpack teraflops up from 285.9 teraflops six months ago.

sc16-accelerators-coprocessors-2006-2016
      Source: Nov. 2016 TOP500

Other highlights from the 48th TOP500 list:

  • A total of 462 systems (92.4 percent) are now using Intel processors, slightly up from 91 percent six months ago.
  • The share of IBM Power processors is now at 22 systems, down from 23 systems six months ago.
  • The AMD Opteron family is used in 7 systems, down from 13 systems on the previous list.
  • A total of 86 systems on the list are using accelerator/co-processor technology, down from 93 on June 2016. Sixty (60) of these use NVIDIA chips, 21 systems with Intel Xeon Phi technology (as co-processors), one uses ATI Radeon, and one uses PEZY technology. Three systems use a combination of Nvidia and Intel Xeon Phi accelerators/co-processors. 10 Systems now use Xeon Phi as the main processing unit.
  • InfiniBand technology is now found on 187 systems, down from 205 systems, and is now the second most-used internal system interconnect technology. Gigabit Ethernet is now at 206 systems down from 218 systems, in large part thanks to 177 systems now using 10G interfaces.
  • Intel Omni-Path technology which made its first appearance six months ago with eight systems is now at 28 systems and is used in the No. 6 system, Oakforest-PACS.

We’ll follow up with more insights and analysis from the TOP500 BoF, which takes place Tuesday night from 5:15-7pm at the Salt Palace Convention Center in Salt Lake City.

For now, the TOP500 compilers — Erich Strohmaier and Horst Simon of Lawrence Berkeley National Laboratory; Jack Dongarra of the University of Tennessee, Knoxville; and Martin Meuer of ISC Group — have put together this poster, which provides a view into key performance trends, as well as the evolving architecture and chip technology landscapes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This