US, China Vie for Supercomputing Supremacy

By Tiffany Trader

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Even without the benefit of another mega-system, China is still a force to be reckoned with; the number one and number two machines alone, both Chinese, provide the list with nearly 19 percent of its total FLOPS. We also see the arrival of Knights Landing systems, a continued dip in accelerator-based systems, and InfiniBand losing ground to Ethernet, as non-traditional “supercomputers” from the cloud and Web 2.0 sphere continue to enter the list.

Before we unzip these trends further, let’s jump to the top of the list, where there are two new additions. Joining the top ten club at number five with 14 petaflops is the NERSC Cori supercomputer, and sliding in at number six is Japan’s new 13.6 petaflops Oakforest-PACS supercomputer. Both Cori, the Cray XC40 system installed at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC), and Oakforest-PACS supercomputer, a Fujitsu PRIMERGY CX1640 M1 cluster operating at Japan’s Joint Center for Advanced High Performance Computing (JCAHPC), rely on the Intel “Knights Landing” Xeon Phi 7250, a 68-core processor that delivers just under 3 peak teraflops of performance.

The brand-new Theta supercomputer, deployed at Argonne National Laboratory ahead of the larger Aurora install, is also using KNL parts, specifically the 64-core Intel Xeon Phi 7230. Theta provides 5.1 Linpack petaflops, earning it the 18th spot on this list. All told, there are 10 systems using Xeon Phi as the main processing unit.

nov-2016-top500-top-10

There are also some noteworthy “internal systems” debuting on the list. At number 28 with 3.3 petaflops Linpack (4.9 petaflops peak) is the the DGX Saturn V from Nvidia, powered by NVLink’d Pascal P100 GPUs. Constructed with 125 DGX-1s, Saturn V is the most energy-efficient system on the list, grabbing the number one spot on the Green500 list with a 8.17 gigaflops/watt rating. That’s a 42 percent improvement from the 6.67 gigaflops/watt delivered by the most efficient machine on previous TOP500 list. Nvidia has had this system in development since GTC16 in March. In June at ISC 2016, Marc Hamilton told us the machine was being used by millions of lines of codes at Nvidia. The graphics chips maker indicated that its automotive teams were its heaviest users.

nvidia_dgx_saturnv-800x
Nvidia’s DGX Saturn V

“In this new style of computing you don’t write if/then/else code to recognize a cat or a stop sign or a pedestrian, you’re feeding a lot of data into a deep neural network and adjusting the network,” Hamilton said. “We have today engineers at Nvidia on our automotive DriveWorks software team, and that’s what they’re doing, rather than writing a bunch of if/then/else code in C they’re getting a bunch of data from a car, either simulated or real, they’re piping it into a deep neural network running on the DGX-1 box – so getting the results in 2 hours instead of 24 hours – they’re adjusting the networking, fine-tuning the network and running it again.”

The number two greenest super is also using P100 GPUs (the only other machine to do so, although to be precise, these are the PCIe variants) — we’re talking about Piz Daint (installed at the Swiss National Supercomputing Centre), which touts an impressive 7.45 gigaflops/watt. Piz Daint recently received a massive 3.5 petaflops P100 infusion that allowed it to hold onto its number 8 spot on the TOP500 despite two new entrants above it (Cori and Oakforest-PACS).

Penguin Computing qualified its in-house machine, Topaz, for the new list achieving a 169th ranking with 760 teraflops (Linpack). The Tundra Extreme Scale machine uses Xeon E5-2695v4 processors and Intel Omni-Path architecture.

Dell EMC is also debuting an on-site machine, Zenith, installed at the Dell HPC Innovation labs in Austin, Texas. Ranked at 372 on the list, Zenith is a 451-teraflops (Linpack) machine built with Dell PowerEdge C6320 and PowerEdge R630 servers using Xeon E5-2697v4 processors and the Intel Omni-Path interconnect. Dell EMC will also be unveiling a companion system (not yet submitted to the TOP500), Rattler, that has 80 C6320 PowerEdge nodes fully connected with EDR. Pascal GPUs will be added soon, according to Dell EMC’s Jim Ganthier, “since that is [the GPU] most customers are interested in trying out.”

The China-US Tally

On the previous edition of the TOP500, released at ISC in June, China had overtaken the United States in both system share and performance share. With this list, the US is now matched with China at 171 systems apiece. As the list authors note, in terms of total performance share, the US now holds the narrowest of leads, 33.9 percent compared to runner-up China’s 33.3 percent.

The number one and two systems — TaihuLight and Tianhe-2 respectively, are Chinese with the 93-petaflops “homegrown” TaihuLight machine commanding a 5.3X FLOPS lead over the fastest US system, the 17.6-petaflops Titan, ranked number three. Although the US has recaptured a bit of ground since the June list, if you take system share, performance share and top-of-the-list status as three primary dimensions of TOP500 leadership, China is in the stronger position.

One can rightly question the relevance of machine “scores” and list standing as the Linpack benchmark becomes less relevant as a stand-in for performance on modern science and engineering applications, but it’s hard to deny the galvanizing impact of a global-scale competition. After all, it’s the supercomputing race that captures the mass attention span and you can’t have a race without a way of gauging who’s ahead.

Last year’s SC (2015) was something of TOP500 coming out party for China. China’s list share went from 37 systems in June 2015 to 109 systems in November 2015 — and then to 168 systems in June 2016. In the same timeframe, US system share fell from 233 to 199 to 165. As Intersect360 Research CEO Addison Snell has remarked, it wasn’t so much that China discovered supercomputing as it discovered the TOP500 list. In other words, many of these machines were older systems newly earmarked for inclusion onto the list.

The US has a major supercomputing refresh planned for 2018-2019 with the CORAL systems coming online, so there will be list churn in the coming years with some jockeying for position, but China won’t be standing still. In addition to the Wuxi supercomputer, China has reported that it will stand up one or two more big systems in the neighborhood of 100-petaflops each. The status of those systems isn’t completely clear, but China has disclosed that they are building three prototype machines ramping up to their 2020 exascale target. The EU and Japan aren’t expecting to reach exascale until at least a year or two after that with the US on track for 2023.

After US and China, Germany ranks third on the latest TOP500 list with 32 systems, followed by Japan with 27, France with 20, and the UK with 17. A year ago, Japan had 37, Germany had 33, and both France and the UK had 18.

top500-nov-2016-vendor-tree-map-rmax
Nov. 2016 TOP500 vendor tree map (% of total list performance)

Looking at the vendor landscape, Cray has staked out the highest share of total list performance at 21.3 percent up from 19.9 percent. The massive Sunway TaihuLight system claims 13.8 percent of the total installed performance, which gives developer NRCPC second-place bragging rights. HPE is in third place with 9.8 percent, down from 12.9 percent six months ago, but will pick up another 6 percent from SGI systems. IBM and Lenovo are tied for fourth place with 8.8 percent share each. Thanks to Tianhe-2 and Tianhe-1A, NUDT contributes 5.8 percent of the total performance of the list, down from 9.2 percent.

By system share, HPE is on top with 112 systems (22.4 percent). HPE will also gain 28 systems from the SGI acquisition, bringing its grand total to 140 machines. In second place is Lenovo with 92 systems. Cray, in third, now has 56 systems, down from 69 systems six month ago. Sugon is fourth with 47 and IBM is fifth with 33. No new IBM system were introduced in this list.

The aggregate performance of all 500 computers on the list stands at 672 petaflops, a 60 percent increase from a year ago. As long as the growth rate stays above 50 percent, the list will reach a total performance of >1,000 petaflops (1 exaflops) one year from now. The 60 percent rate represents a slight uptick in the year over year growth. The growth of the average performance of all systems in the list slowed in 2008 and again in 2013, dropping to around 55 percent per year. Prior to 2008, aggregate system performance was increasing by about 90 percent per year.

sc16-performance-development-trajectories
Nov. 2016 TOP500 Performance Development

The aggregate performance of the top ten machines is 226 petaflops. 117 systems have cracked the petaflops ceiling, compared with 95 machines on the previous list. The admission point for the TOP100 is currently 1.07 petaflops (up from 958 teraflops). The bar for entry onto the list has been raised to 349.3 Linpack teraflops up from 285.9 teraflops six months ago.

sc16-accelerators-coprocessors-2006-2016
      Source: Nov. 2016 TOP500

Other highlights from the 48th TOP500 list:

  • A total of 462 systems (92.4 percent) are now using Intel processors, slightly up from 91 percent six months ago.
  • The share of IBM Power processors is now at 22 systems, down from 23 systems six months ago.
  • The AMD Opteron family is used in 7 systems, down from 13 systems on the previous list.
  • A total of 86 systems on the list are using accelerator/co-processor technology, down from 93 on June 2016. Sixty (60) of these use NVIDIA chips, 21 systems with Intel Xeon Phi technology (as co-processors), one uses ATI Radeon, and one uses PEZY technology. Three systems use a combination of Nvidia and Intel Xeon Phi accelerators/co-processors. 10 Systems now use Xeon Phi as the main processing unit.
  • InfiniBand technology is now found on 187 systems, down from 205 systems, and is now the second most-used internal system interconnect technology. Gigabit Ethernet is now at 206 systems down from 218 systems, in large part thanks to 177 systems now using 10G interfaces.
  • Intel Omni-Path technology which made its first appearance six months ago with eight systems is now at 28 systems and is used in the No. 6 system, Oakforest-PACS.

We’ll follow up with more insights and analysis from the TOP500 BoF, which takes place Tuesday night from 5:15-7pm at the Salt Palace Convention Center in Salt Lake City.

For now, the TOP500 compilers — Erich Strohmaier and Horst Simon of Lawrence Berkeley National Laboratory; Jack Dongarra of the University of Tennessee, Knoxville; and Martin Meuer of ISC Group — have put together this poster, which provides a view into key performance trends, as well as the evolving architecture and chip technology landscapes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s existing 20-quibit platform into a more robust, self-contain Read more…

By John Russell

Intel at CES: Nervana; 10nm Server CPU; Cascade Lake

January 9, 2019

On the eve of the Consumer Electronics Show in Las Vegas this week, Intel staged a launch event that covered a new version of its Nervana AI processor and a demonstration of the next-generation Xeon 10nm chip. The Read more…

By Staff

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Data: The Key To Unlocking Modern Research

Research tackles the big questions, delving into uncharted territory in pursuit of knowledge that could change the world. Today’s research simulations are generating more data than ever before, a trend that shows no signs of slowing. Read more…

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourself – and you are the easiest person to fool.” This maxim Read more…

By Ben Criger

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Batswana Gems

December 20, 2018

Most who work in the high-performance computing (HPC) industry agree; people problems are far more complicated than technical challenges. As I wrote in a 2015 HPCwire feature titled, “Women in HPC: Revelations and Reckoning,” diversity, or the lack thereof, is the HPC industry’s current grand challenge. Read more…

By Elizabeth Leake

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This