A Decade in HPC

By Addison Snell

November 15, 2016

A lot can change in ten years. We might move houses or change jobs. Our kids get older (and so do we). If we’re lucky we make new friends, and we’re sad when old ones pass into memory. There are some things we hold onto—our core values, our driving passions—and over ten years, we hope to see progress toward our goals, so that when we look back on a decade, we see how far we’ve come.

This is our tenth Supercomputing Conference since starting Intersect360 Research in January 2007 (as Tabor Research then, a division of Tabor Communications), and it’s been a decade of change. It’s hard to think of industries that evolve as rapidly as HPC. Most other advancements you’d think of—in scientific research, manufacturing, electronics, entertainment, transportation—have ties to HPC. Year by year, HPC influences the arc of change in our lives.

As part of a retrospective on our ten years as HPC analysts, I reviewed what the industry looked like when we began, along with the predictions we made along the way. Ten years ago, our industry looked a lot different.

  • Beowulf-style x86 clusters were the dominant paradigm, and blade form factors were about to take off, but Intel was not the number-one processor vendor for HPC clusters in 2006. (It was AMD.)
  • Grid computing was still a common topic, and cloud computing had not yet taken hold.
  • The U.S. was indisputably the leader in supercomputing. The BlueGene/L system at Lawrence Livermore National Laboratories was in the middle of its streak of number-one rankings on the TOP500 list, having recently doubled in capacity to 136 teraflops.
  • InfiniBand overtook all other non-Ethernet interconnects for the first time, with Mellanox as the only silicon provider. (QLogic announced its entrance two years later, at SC08.)
  • Parallel file systems were uncommon, though in 2007 Panasas would begin a major campaign around pNFS, and Sun Microsystems acquired Cluster File Systems, Inc., which owned Lustre. IBM had GPFS but had not yet acquired Platform Computing.
  • Most importantly, it was the dawn of the multicore era. AMD, IBM, and Intel were all shipping dual-core CPUs, with roadmaps leading to four, eight, and more. This would prove to be the most definitive shift that changed the face of HPC.

intersect360logoIt was into this industry landscape that we brought our new HPC analyst company. We founded Intersect360 Research (as Tabor Research then) with an eye on doing something different, relying primarily on forward-looking surveys of the broad HPC community to drive a better understanding of future trends.

Furthermore, we strove to be inclusive of non-traditional use cases of HPC in business, calling it “Edge HPC” in 2007 before later changing its name to “High Performance Business Computing,” the nomenclature we still use today. As part of that effort, we identified financial services as one of the largest commercial vertical markets for HPC. And another segment proved controversial, as we also counted what we then called “ultrascale internet” as a consumer of HPC technologies. Today we still track this segment, but it is modernly called “hyperscale,” and it has grown and evolved into its own market, adjacent to HPC but not part of it.

That early recognition of the hyperscale market is far from the only future-looking insight we had. In 2007, we published research that predicted that business applications would drive the growth in the HPC industry, which they have. (Finance is still a top segment, and all commercial markets have been growing.) We also said that year that grappling with large amounts of data the need for systems focused on data management. Okay, we didn’t call it “Big Data” at the time, but the trend was there.

And that transition to multicore? We saw what that was doing too. We predicted it would lead to power consumption as a top-tier consideration, and that there would be an increased investment in middleware. We said in 2007 that GPUs would become a predominant accelerator architecture, beginning at the entry-level and working their way up in scale. And we perceived a growing gap between delivered and actual performance.

We thought at the time that this would lead the industry to beginning to devalue raw metrics of performance, such as flops, in favor of truer productivity metrics, and we even used the term “High Productivity Computing” for a while. That’s one we got wrong, at least as far as the last ten years is concerned, though we do hear talk now of “Exascale” rather than “Exaflops,” a tentative step in that direction.

Along the way, there were also the things we said wouldn’t happen. Although Big Data swept through IT, we said the applicability and usage of Hadoop would be limited, and that Hadoop wouldn’t make a big dent in HPC. Bolstered by evidence in our surveys, we also said that HPC would be very slow to adopt public cloud resources. Today, less that 3 percent of HPC spending is in public cloud, though we do now project double-digit growth for the next five years.

The biggest change of all was more recent, when for the last three years we began to recognize the end of the “Beowulf era,” as defined by clusters of similar architecture, where regardless of vendor or form factor, there was simple portability of MPI codes from one system to the next. That has passed, and we now swing back toward an era of specialization, in which end users must select which architectures to optimize for, and they may wind up committed for many years. Furthermore, 88 percent of HPC users say they will support multiple architectures, matching applications to the systems where they run best.

The Decade Ahead

The next 10 years are certain to bring even more change in HPC. At a recent presentation for the HPC Advisory Council, we predicted that specialized, custom architectures will reemerge, that public cloud will remain less than 10 percent of HPC spending, and that object storage will begin to take off in commercial markets.

And the biggest change of all is in evidence this week at SC16. The influence of hyperscale will be felt strongly, in software and middleware (e.g., OpenStack), in system configurations (e.g. Open Compute Project), and most particularly in the hottest new application area: artificial intelligence.

AI (including its other names, like “cognitive computing,” and inclusive of algorithms like machine learning and deep learning) will have a transformative effect on industry and our lives. As with HPC, there are few limits to imagining what can eventually be done with it. And it will drive the use of certain HPC technologies, particularly among the large cloud providers. One difference between AI and HPC is its strong affinity to cloud.

Amongst all this change, a few things will remain the same. The fundamental drivers of the HPC market will remain strong, because there will always be new insights to glean and harder problems to solve. Regardless of any hot, new application areas, there will continue to be a need for good old traditional HPC and supercomputing, until one day we wake up and decide we’ve reached the end of science. And for the next ten years and into the future, Intersect360 Research will remain true to its foundational goal, to deliver critical industry insights, year after year.

About the Author

addison-snellAddison Snell is the CEO of Intersect360 Research and a veteran of the high performance computing industry. He launched the company in 2007 as Tabor Research, a division of Tabor Communications, and served as that company’s VP/GM until he and his partner, Christopher Willard, Ph.D., acquired Tabor Research in 2009. During his tenure, Addison has established Intersect360 Research as a premier source of market information, analysis, and consulting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire