A Decade in HPC

By Addison Snell

November 15, 2016

A lot can change in ten years. We might move houses or change jobs. Our kids get older (and so do we). If we’re lucky we make new friends, and we’re sad when old ones pass into memory. There are some things we hold onto—our core values, our driving passions—and over ten years, we hope to see progress toward our goals, so that when we look back on a decade, we see how far we’ve come.

This is our tenth Supercomputing Conference since starting Intersect360 Research in January 2007 (as Tabor Research then, a division of Tabor Communications), and it’s been a decade of change. It’s hard to think of industries that evolve as rapidly as HPC. Most other advancements you’d think of—in scientific research, manufacturing, electronics, entertainment, transportation—have ties to HPC. Year by year, HPC influences the arc of change in our lives.

As part of a retrospective on our ten years as HPC analysts, I reviewed what the industry looked like when we began, along with the predictions we made along the way. Ten years ago, our industry looked a lot different.

  • Beowulf-style x86 clusters were the dominant paradigm, and blade form factors were about to take off, but Intel was not the number-one processor vendor for HPC clusters in 2006. (It was AMD.)
  • Grid computing was still a common topic, and cloud computing had not yet taken hold.
  • The U.S. was indisputably the leader in supercomputing. The BlueGene/L system at Lawrence Livermore National Laboratories was in the middle of its streak of number-one rankings on the TOP500 list, having recently doubled in capacity to 136 teraflops.
  • InfiniBand overtook all other non-Ethernet interconnects for the first time, with Mellanox as the only silicon provider. (QLogic announced its entrance two years later, at SC08.)
  • Parallel file systems were uncommon, though in 2007 Panasas would begin a major campaign around pNFS, and Sun Microsystems acquired Cluster File Systems, Inc., which owned Lustre. IBM had GPFS but had not yet acquired Platform Computing.
  • Most importantly, it was the dawn of the multicore era. AMD, IBM, and Intel were all shipping dual-core CPUs, with roadmaps leading to four, eight, and more. This would prove to be the most definitive shift that changed the face of HPC.

intersect360logoIt was into this industry landscape that we brought our new HPC analyst company. We founded Intersect360 Research (as Tabor Research then) with an eye on doing something different, relying primarily on forward-looking surveys of the broad HPC community to drive a better understanding of future trends.

Furthermore, we strove to be inclusive of non-traditional use cases of HPC in business, calling it “Edge HPC” in 2007 before later changing its name to “High Performance Business Computing,” the nomenclature we still use today. As part of that effort, we identified financial services as one of the largest commercial vertical markets for HPC. And another segment proved controversial, as we also counted what we then called “ultrascale internet” as a consumer of HPC technologies. Today we still track this segment, but it is modernly called “hyperscale,” and it has grown and evolved into its own market, adjacent to HPC but not part of it.

That early recognition of the hyperscale market is far from the only future-looking insight we had. In 2007, we published research that predicted that business applications would drive the growth in the HPC industry, which they have. (Finance is still a top segment, and all commercial markets have been growing.) We also said that year that grappling with large amounts of data the need for systems focused on data management. Okay, we didn’t call it “Big Data” at the time, but the trend was there.

And that transition to multicore? We saw what that was doing too. We predicted it would lead to power consumption as a top-tier consideration, and that there would be an increased investment in middleware. We said in 2007 that GPUs would become a predominant accelerator architecture, beginning at the entry-level and working their way up in scale. And we perceived a growing gap between delivered and actual performance.

We thought at the time that this would lead the industry to beginning to devalue raw metrics of performance, such as flops, in favor of truer productivity metrics, and we even used the term “High Productivity Computing” for a while. That’s one we got wrong, at least as far as the last ten years is concerned, though we do hear talk now of “Exascale” rather than “Exaflops,” a tentative step in that direction.

Along the way, there were also the things we said wouldn’t happen. Although Big Data swept through IT, we said the applicability and usage of Hadoop would be limited, and that Hadoop wouldn’t make a big dent in HPC. Bolstered by evidence in our surveys, we also said that HPC would be very slow to adopt public cloud resources. Today, less that 3 percent of HPC spending is in public cloud, though we do now project double-digit growth for the next five years.

The biggest change of all was more recent, when for the last three years we began to recognize the end of the “Beowulf era,” as defined by clusters of similar architecture, where regardless of vendor or form factor, there was simple portability of MPI codes from one system to the next. That has passed, and we now swing back toward an era of specialization, in which end users must select which architectures to optimize for, and they may wind up committed for many years. Furthermore, 88 percent of HPC users say they will support multiple architectures, matching applications to the systems where they run best.

The Decade Ahead

The next 10 years are certain to bring even more change in HPC. At a recent presentation for the HPC Advisory Council, we predicted that specialized, custom architectures will reemerge, that public cloud will remain less than 10 percent of HPC spending, and that object storage will begin to take off in commercial markets.

And the biggest change of all is in evidence this week at SC16. The influence of hyperscale will be felt strongly, in software and middleware (e.g., OpenStack), in system configurations (e.g. Open Compute Project), and most particularly in the hottest new application area: artificial intelligence.

AI (including its other names, like “cognitive computing,” and inclusive of algorithms like machine learning and deep learning) will have a transformative effect on industry and our lives. As with HPC, there are few limits to imagining what can eventually be done with it. And it will drive the use of certain HPC technologies, particularly among the large cloud providers. One difference between AI and HPC is its strong affinity to cloud.

Amongst all this change, a few things will remain the same. The fundamental drivers of the HPC market will remain strong, because there will always be new insights to glean and harder problems to solve. Regardless of any hot, new application areas, there will continue to be a need for good old traditional HPC and supercomputing, until one day we wake up and decide we’ve reached the end of science. And for the next ten years and into the future, Intersect360 Research will remain true to its foundational goal, to deliver critical industry insights, year after year.

About the Author

addison-snellAddison Snell is the CEO of Intersect360 Research and a veteran of the high performance computing industry. He launched the company in 2007 as Tabor Research, a division of Tabor Communications, and served as that company’s VP/GM until he and his partner, Christopher Willard, Ph.D., acquired Tabor Research in 2009. During his tenure, Addison has established Intersect360 Research as a premier source of market information, analysis, and consulting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support contracts directly from Nvidia for the certified systems ar Read more…

By John Russell

XSEDE Supercomputers Square Off Against Ebola

January 26, 2021

COVID-19 may have dominated headlines and occupied much of the world’s scientific computing capacity over the last year, but many researchers continued their work to keep other deadly viruses at bay. One of those, Ebol Read more…

By Oliver Peckham

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support Read more…

By John Russell

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This