A Decade in HPC

By Addison Snell

November 15, 2016

A lot can change in ten years. We might move houses or change jobs. Our kids get older (and so do we). If we’re lucky we make new friends, and we’re sad when old ones pass into memory. There are some things we hold onto—our core values, our driving passions—and over ten years, we hope to see progress toward our goals, so that when we look back on a decade, we see how far we’ve come.

This is our tenth Supercomputing Conference since starting Intersect360 Research in January 2007 (as Tabor Research then, a division of Tabor Communications), and it’s been a decade of change. It’s hard to think of industries that evolve as rapidly as HPC. Most other advancements you’d think of—in scientific research, manufacturing, electronics, entertainment, transportation—have ties to HPC. Year by year, HPC influences the arc of change in our lives.

As part of a retrospective on our ten years as HPC analysts, I reviewed what the industry looked like when we began, along with the predictions we made along the way. Ten years ago, our industry looked a lot different.

  • Beowulf-style x86 clusters were the dominant paradigm, and blade form factors were about to take off, but Intel was not the number-one processor vendor for HPC clusters in 2006. (It was AMD.)
  • Grid computing was still a common topic, and cloud computing had not yet taken hold.
  • The U.S. was indisputably the leader in supercomputing. The BlueGene/L system at Lawrence Livermore National Laboratories was in the middle of its streak of number-one rankings on the TOP500 list, having recently doubled in capacity to 136 teraflops.
  • InfiniBand overtook all other non-Ethernet interconnects for the first time, with Mellanox as the only silicon provider. (QLogic announced its entrance two years later, at SC08.)
  • Parallel file systems were uncommon, though in 2007 Panasas would begin a major campaign around pNFS, and Sun Microsystems acquired Cluster File Systems, Inc., which owned Lustre. IBM had GPFS but had not yet acquired Platform Computing.
  • Most importantly, it was the dawn of the multicore era. AMD, IBM, and Intel were all shipping dual-core CPUs, with roadmaps leading to four, eight, and more. This would prove to be the most definitive shift that changed the face of HPC.

intersect360logoIt was into this industry landscape that we brought our new HPC analyst company. We founded Intersect360 Research (as Tabor Research then) with an eye on doing something different, relying primarily on forward-looking surveys of the broad HPC community to drive a better understanding of future trends.

Furthermore, we strove to be inclusive of non-traditional use cases of HPC in business, calling it “Edge HPC” in 2007 before later changing its name to “High Performance Business Computing,” the nomenclature we still use today. As part of that effort, we identified financial services as one of the largest commercial vertical markets for HPC. And another segment proved controversial, as we also counted what we then called “ultrascale internet” as a consumer of HPC technologies. Today we still track this segment, but it is modernly called “hyperscale,” and it has grown and evolved into its own market, adjacent to HPC but not part of it.

That early recognition of the hyperscale market is far from the only future-looking insight we had. In 2007, we published research that predicted that business applications would drive the growth in the HPC industry, which they have. (Finance is still a top segment, and all commercial markets have been growing.) We also said that year that grappling with large amounts of data the need for systems focused on data management. Okay, we didn’t call it “Big Data” at the time, but the trend was there.

And that transition to multicore? We saw what that was doing too. We predicted it would lead to power consumption as a top-tier consideration, and that there would be an increased investment in middleware. We said in 2007 that GPUs would become a predominant accelerator architecture, beginning at the entry-level and working their way up in scale. And we perceived a growing gap between delivered and actual performance.

We thought at the time that this would lead the industry to beginning to devalue raw metrics of performance, such as flops, in favor of truer productivity metrics, and we even used the term “High Productivity Computing” for a while. That’s one we got wrong, at least as far as the last ten years is concerned, though we do hear talk now of “Exascale” rather than “Exaflops,” a tentative step in that direction.

Along the way, there were also the things we said wouldn’t happen. Although Big Data swept through IT, we said the applicability and usage of Hadoop would be limited, and that Hadoop wouldn’t make a big dent in HPC. Bolstered by evidence in our surveys, we also said that HPC would be very slow to adopt public cloud resources. Today, less that 3 percent of HPC spending is in public cloud, though we do now project double-digit growth for the next five years.

The biggest change of all was more recent, when for the last three years we began to recognize the end of the “Beowulf era,” as defined by clusters of similar architecture, where regardless of vendor or form factor, there was simple portability of MPI codes from one system to the next. That has passed, and we now swing back toward an era of specialization, in which end users must select which architectures to optimize for, and they may wind up committed for many years. Furthermore, 88 percent of HPC users say they will support multiple architectures, matching applications to the systems where they run best.

The Decade Ahead

The next 10 years are certain to bring even more change in HPC. At a recent presentation for the HPC Advisory Council, we predicted that specialized, custom architectures will reemerge, that public cloud will remain less than 10 percent of HPC spending, and that object storage will begin to take off in commercial markets.

And the biggest change of all is in evidence this week at SC16. The influence of hyperscale will be felt strongly, in software and middleware (e.g., OpenStack), in system configurations (e.g. Open Compute Project), and most particularly in the hottest new application area: artificial intelligence.

AI (including its other names, like “cognitive computing,” and inclusive of algorithms like machine learning and deep learning) will have a transformative effect on industry and our lives. As with HPC, there are few limits to imagining what can eventually be done with it. And it will drive the use of certain HPC technologies, particularly among the large cloud providers. One difference between AI and HPC is its strong affinity to cloud.

Amongst all this change, a few things will remain the same. The fundamental drivers of the HPC market will remain strong, because there will always be new insights to glean and harder problems to solve. Regardless of any hot, new application areas, there will continue to be a need for good old traditional HPC and supercomputing, until one day we wake up and decide we’ve reached the end of science. And for the next ten years and into the future, Intersect360 Research will remain true to its foundational goal, to deliver critical industry insights, year after year.

About the Author

addison-snellAddison Snell is the CEO of Intersect360 Research and a veteran of the high performance computing industry. He launched the company in 2007 as Tabor Research, a division of Tabor Communications, and served as that company’s VP/GM until he and his partner, Christopher Willard, Ph.D., acquired Tabor Research in 2009. During his tenure, Addison has established Intersect360 Research as a premier source of market information, analysis, and consulting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This