SC16 Precision Medicine Panel Proves HPC Matters

By John Russell

November 16, 2016

In virtually every way, precision medicine (PM) is the poster child for the HPC Matters mantra and was a good choice for the Monday panel opening SC16 (HPC Impacts on Precision Medicine: Life’s Future–The Next Frontier in Healthcare). PM’s tantalizing promise is to touch all of us, not just writ large but individually – effectively fighting disease, enhancing health and lifestyle, extending life, and necessarily contributing to basic science along the way. All of this can only happen with HPC.

Moderated by Steve Conway of IDC, five distinguished panelists from varying disciplines painted a powerful picture of PM’s prospects and challenges. Rather than dwell down-in-the-weeds on HPC technology minutiae, the panel tackled the broad sweep of data-driven science, mixed workload infrastructure, close collaboration across domains and organizations, and the need to make use of incremental advances while still pursuing transformational change.

It was a conversation with wide scope and difficult to summarize. Here are the panelists and a sound bite from their opening comments:

  • Mitchell Cohen, director of surgery, Denver Health Medical Center; Professor, University of Colorado School of Medicine. “If you get shot, stabbed, or run over I am your guy – a good person not to need,” quipped Cohen, momentarily underplaying his equal strength in basic medical research.
  • Warren Kibbe, director, Center for Biomedical Informatics and Information Technology (CBIIT); CIO, acting deputy director, National Cancer Institute. “[ACS] estimates there will be 1.7M new cases of cancer in the U.S. along and 14M worldwide this year. Six hundred thousand will die. [However] the mortality rate in cancer has been declining year since about 2000 so we are doing something right but it’s clear we need to understand more about basic biology,” said Kibbe.
  • Steve Scott, chief technology officer, Cray Inc. “I’m the computer guy. We tend to talk about Pflops [and the like]. The real disconnect is between the computational science world and clinical scientist and physicians. We need build solutions those people can use,” said Scott who dove a bit deeper into the simulation and analytics technologies and the computer architecture required to deliver PM.
  • Fred Streitz, LLNL
    Fred Streitz, LLNL

    Fred Streitz, chief computational scientist and director of the High Performance Computing Innovation Center at Lawrence Livermore Lab.[i] Talking about a population scale data collection pilot that’s part of the CANcer Distributed Learning Environment (CANDLE), said Streitz: “[It’s] where rubber hits the roads. It’s focused on [establishing] an effective national cancer surveillance program that takes advantage of all of the data we currently have and are already collecting in different ways and states – [and will first use] natural language processing to makes sense of the data and regularize the data, and, then use machine learning to extract the information in a useful way.”

  • Martha Head, senior director, The Noldor; acting head, Insights from Data at GlaxoSmithKline Pharmaceuticals. She tackled the lengthy and problematic drug R&D cycle (a decade) from hypothesis to therapy. “We have to go faster [and not] with the same processes and just rushing ever faster. We need transformation, a new approach that combines simulation HPC and data analytics with experiment – a new engineering paradigm that almost treats an experiment as a subroutine or a function in a larger algorithm that we are running in our drug discovery process,” said Head.

Setting the stage, Conway emphasized zeroing in on the most appropriate care and preventative treatment is also financially imperative. The U.S. spent about $3 Trillion on healthcare in 2014 and is headed to $4.8 Trillion in 2021. Other countries do a bit better, with healthcare spending claiming 9-11 percent of GDP, yet that too is alarming.

PM, he said, will not only help save lives but also curb costs. It’s also becoming an important HPC market, so much that IDC is tracking dozens of healthcare initiatives around the world and will add PM as a new market segment it tracks within commercial analytics. Clearly the stakes are high.

Warren Kibbe, NCI
Warren Kibbe, NCI

Kibbe, a key player in NCI’s Moonshot program, is a powerful advocate of HPC tools’ capacity to advance medicine through database creation, machine-learning based techniques, and a variety of simulation. That said, he cautioned, the biggest hurdle remains unknown biology. We simply do not know enough basic biology. This is a point echoed by a few others. Basic research as part of PM overall will help.

The Cancer Moonshot, he noted, has been carefully road-mapping what it thinks can be impactful and done. CANDLE is one of those efforts. He noted a blue ribbon NCI panel has spelled out clear objectives in a publically available report. Here are a few of its directional findings:

These and other efforts, driven by HPC, will work over time. One example is creation of the NCI Genomic Data Commons intended to provide the cancer research community with a unified data repository that enables data sharing across cancer genomic studies in support of precision medicine. “I want to give a shout out to Bob Grossman and his team at the University of Chicago,” said Kibbe of the project. The idea is “to help take data out of existing repositories and get it into the cloud so people can use cloud computing more effectively.”

Kibbe offered a realistically measured view of the Cancer Moonshot’s goal. It will make significant, meaningful progress, but it’s a long road towards whatever it is that actually constitutes a cure for al cancers. Head of GSK agreed and emphasized the value of public-private collaborations like the one GSK has with NCI.

As described by NCI, “Department of Energy, NCI, and GlaxoSmithKline are forming a new public–private partnership designed to harness high-performance computing and diverse biological data to accelerate the drug discovery process and bring new cancer therapies from target to first in human trials in less than a year. This partnership will bring together scientists from multiple disciplines to advance our understanding of cancer by finding patterns in vast and complex datasets to accelerate the development of new cancer therapies.”

Given the wealth of genomics data and the relative paucity of mechanistic information, pattern recognition and database analysis have been primary tools in pursuing PM. Recent advancement in these data-driven science techniques and their increasing use on HPC infrastructure are well aligned with PM purposes said Scott. The emerging HPC system model, which emphasizes memory and data movement as well as intense computation (lots of flops) is a good fit for PM.

NERSC Cray Cori supercomputer at Wang Hall - graphic panels installation - November 09, 2015.
NERSC Cray Cori supercomputer at Wang Hall – graphic panels installation – November 09, 2015.

“Computational demands and algorithm complexity are pushing us to build larger and larger machines, like Cori at NERSC, but they are fortunately pushing us in the direction of broader HPC. Computations tends to get all of the attention, [but] the real way to build a SC today depends upon the memory systems and interconnect,” said Scott. A mixed workload environment is what’s needed and also where supercomputing is trending.

“On the software side common HPC techniques like simulation done on molecular dynamics or finite element analysis or image processing can be brought to bear fairly successfully on PM problems [while similarly] areas like large scale graph analytics and machine learning are also critical.”

Streitz reviewed directions of CANDLE’s three pilot projects (see figure below) one of which seeks to unravel the role of RAS mutations, current in about 30 percent of cancer including some of the toughest, zeroing in how RAS behaves on the cell membrane. RAS is involved in growth and when it gets stuck in the on position, cancer can be the result.

nci_doe_collaborations

Just today, it was announced that NVIDIA will join the project. Here’s an excerpt from the release:

“AI will be essential to achieve the objectives of the Cancer Moonshot,” said Rick Stevens, associate laboratory director for Computing, Environment and Life Sciences at Argonne National Laboratory. “New computing architectures have accelerated the training of neural networks by 50 times in just three years, and we expect more dramatic gains ahead.”

“GPU deep learning has given us a new tool to tackle grand challenges that have, up to now, been too complex for even the most powerful supercomputers,” said Jen-Hsun Huang, founder and chief executive officer, NVIDIA.

“Together with the Department of Energy and the National Cancer Institute, we are creating an AI supercomputing platform for cancer research. This ambitious collaboration is a giant leap in accelerating one of our nation’s greatest undertakings, the fight against cancer.” (See the full release: http://nvidianews.nvidia.com/news/nvidia-teams-with-national-cancer-institute-u-s-department-of-energy-to-create-ai-platform-for-accelerating-cancer-research#sthash.AiT5EhY2.dpuf )

One of the most interesting observations came from Cohen. To some extent PM is trying to capture the knowledge experienced clinicians already have and codify it and make it available. Think of the time required to train a complicate neural network, matching answers to desire outcomes based on experience, as akin to clinical training and experience. Some clinicians still push back against this idea, calling it autonomous medicine that will claim or erode their jobs said Cohen.

This was clearly not his view. It’s also less about how PM can contribute to progress and more about its implementation. Still it suggested creating physician friendly tools and changing physician attitudes is at least a part of the challenge.

Capturing the full scope of the SC16 panel is a tall order. PM is a broad undertaking with many components. The NCI Cancer Moonshot is making progress daily, as demonstrated by today’s NVIDIA announcement. Precision medicine, which depends critically on HPC, matters.

[i] Streitz fiilled for Dimitri Kusnezov, Chief Scientist & Senior Advisor to the Secretary, U.S. Department of Energy, National Nuclear Security Administration, who was stuck in San Francisco because of travel problems.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This