SC16 Precision Medicine Panel Proves HPC Matters

By John Russell

November 16, 2016

In virtually every way, precision medicine (PM) is the poster child for the HPC Matters mantra and was a good choice for the Monday panel opening SC16 (HPC Impacts on Precision Medicine: Life’s Future–The Next Frontier in Healthcare). PM’s tantalizing promise is to touch all of us, not just writ large but individually – effectively fighting disease, enhancing health and lifestyle, extending life, and necessarily contributing to basic science along the way. All of this can only happen with HPC.

Moderated by Steve Conway of IDC, five distinguished panelists from varying disciplines painted a powerful picture of PM’s prospects and challenges. Rather than dwell down-in-the-weeds on HPC technology minutiae, the panel tackled the broad sweep of data-driven science, mixed workload infrastructure, close collaboration across domains and organizations, and the need to make use of incremental advances while still pursuing transformational change.

It was a conversation with wide scope and difficult to summarize. Here are the panelists and a sound bite from their opening comments:

  • Mitchell Cohen, director of surgery, Denver Health Medical Center; Professor, University of Colorado School of Medicine. “If you get shot, stabbed, or run over I am your guy – a good person not to need,” quipped Cohen, momentarily underplaying his equal strength in basic medical research.
  • Warren Kibbe, director, Center for Biomedical Informatics and Information Technology (CBIIT); CIO, acting deputy director, National Cancer Institute. “[ACS] estimates there will be 1.7M new cases of cancer in the U.S. along and 14M worldwide this year. Six hundred thousand will die. [However] the mortality rate in cancer has been declining year since about 2000 so we are doing something right but it’s clear we need to understand more about basic biology,” said Kibbe.
  • Steve Scott, chief technology officer, Cray Inc. “I’m the computer guy. We tend to talk about Pflops [and the like]. The real disconnect is between the computational science world and clinical scientist and physicians. We need build solutions those people can use,” said Scott who dove a bit deeper into the simulation and analytics technologies and the computer architecture required to deliver PM.
  • Fred Streitz, LLNL
    Fred Streitz, LLNL

    Fred Streitz, chief computational scientist and director of the High Performance Computing Innovation Center at Lawrence Livermore Lab.[i] Talking about a population scale data collection pilot that’s part of the CANcer Distributed Learning Environment (CANDLE), said Streitz: “[It’s] where rubber hits the roads. It’s focused on [establishing] an effective national cancer surveillance program that takes advantage of all of the data we currently have and are already collecting in different ways and states – [and will first use] natural language processing to makes sense of the data and regularize the data, and, then use machine learning to extract the information in a useful way.”

  • Martha Head, senior director, The Noldor; acting head, Insights from Data at GlaxoSmithKline Pharmaceuticals. She tackled the lengthy and problematic drug R&D cycle (a decade) from hypothesis to therapy. “We have to go faster [and not] with the same processes and just rushing ever faster. We need transformation, a new approach that combines simulation HPC and data analytics with experiment – a new engineering paradigm that almost treats an experiment as a subroutine or a function in a larger algorithm that we are running in our drug discovery process,” said Head.

Setting the stage, Conway emphasized zeroing in on the most appropriate care and preventative treatment is also financially imperative. The U.S. spent about $3 Trillion on healthcare in 2014 and is headed to $4.8 Trillion in 2021. Other countries do a bit better, with healthcare spending claiming 9-11 percent of GDP, yet that too is alarming.

PM, he said, will not only help save lives but also curb costs. It’s also becoming an important HPC market, so much that IDC is tracking dozens of healthcare initiatives around the world and will add PM as a new market segment it tracks within commercial analytics. Clearly the stakes are high.

Warren Kibbe, NCI
Warren Kibbe, NCI

Kibbe, a key player in NCI’s Moonshot program, is a powerful advocate of HPC tools’ capacity to advance medicine through database creation, machine-learning based techniques, and a variety of simulation. That said, he cautioned, the biggest hurdle remains unknown biology. We simply do not know enough basic biology. This is a point echoed by a few others. Basic research as part of PM overall will help.

The Cancer Moonshot, he noted, has been carefully road-mapping what it thinks can be impactful and done. CANDLE is one of those efforts. He noted a blue ribbon NCI panel has spelled out clear objectives in a publically available report. Here are a few of its directional findings:

These and other efforts, driven by HPC, will work over time. One example is creation of the NCI Genomic Data Commons intended to provide the cancer research community with a unified data repository that enables data sharing across cancer genomic studies in support of precision medicine. “I want to give a shout out to Bob Grossman and his team at the University of Chicago,” said Kibbe of the project. The idea is “to help take data out of existing repositories and get it into the cloud so people can use cloud computing more effectively.”

Kibbe offered a realistically measured view of the Cancer Moonshot’s goal. It will make significant, meaningful progress, but it’s a long road towards whatever it is that actually constitutes a cure for al cancers. Head of GSK agreed and emphasized the value of public-private collaborations like the one GSK has with NCI.

As described by NCI, “Department of Energy, NCI, and GlaxoSmithKline are forming a new public–private partnership designed to harness high-performance computing and diverse biological data to accelerate the drug discovery process and bring new cancer therapies from target to first in human trials in less than a year. This partnership will bring together scientists from multiple disciplines to advance our understanding of cancer by finding patterns in vast and complex datasets to accelerate the development of new cancer therapies.”

Given the wealth of genomics data and the relative paucity of mechanistic information, pattern recognition and database analysis have been primary tools in pursuing PM. Recent advancement in these data-driven science techniques and their increasing use on HPC infrastructure are well aligned with PM purposes said Scott. The emerging HPC system model, which emphasizes memory and data movement as well as intense computation (lots of flops) is a good fit for PM.

NERSC Cray Cori supercomputer at Wang Hall - graphic panels installation - November 09, 2015.
NERSC Cray Cori supercomputer at Wang Hall – graphic panels installation – November 09, 2015.

“Computational demands and algorithm complexity are pushing us to build larger and larger machines, like Cori at NERSC, but they are fortunately pushing us in the direction of broader HPC. Computations tends to get all of the attention, [but] the real way to build a SC today depends upon the memory systems and interconnect,” said Scott. A mixed workload environment is what’s needed and also where supercomputing is trending.

“On the software side common HPC techniques like simulation done on molecular dynamics or finite element analysis or image processing can be brought to bear fairly successfully on PM problems [while similarly] areas like large scale graph analytics and machine learning are also critical.”

Streitz reviewed directions of CANDLE’s three pilot projects (see figure below) one of which seeks to unravel the role of RAS mutations, current in about 30 percent of cancer including some of the toughest, zeroing in how RAS behaves on the cell membrane. RAS is involved in growth and when it gets stuck in the on position, cancer can be the result.

nci_doe_collaborations

Just today, it was announced that NVIDIA will join the project. Here’s an excerpt from the release:

“AI will be essential to achieve the objectives of the Cancer Moonshot,” said Rick Stevens, associate laboratory director for Computing, Environment and Life Sciences at Argonne National Laboratory. “New computing architectures have accelerated the training of neural networks by 50 times in just three years, and we expect more dramatic gains ahead.”

“GPU deep learning has given us a new tool to tackle grand challenges that have, up to now, been too complex for even the most powerful supercomputers,” said Jen-Hsun Huang, founder and chief executive officer, NVIDIA.

“Together with the Department of Energy and the National Cancer Institute, we are creating an AI supercomputing platform for cancer research. This ambitious collaboration is a giant leap in accelerating one of our nation’s greatest undertakings, the fight against cancer.” (See the full release: http://nvidianews.nvidia.com/news/nvidia-teams-with-national-cancer-institute-u-s-department-of-energy-to-create-ai-platform-for-accelerating-cancer-research#sthash.AiT5EhY2.dpuf )

One of the most interesting observations came from Cohen. To some extent PM is trying to capture the knowledge experienced clinicians already have and codify it and make it available. Think of the time required to train a complicate neural network, matching answers to desire outcomes based on experience, as akin to clinical training and experience. Some clinicians still push back against this idea, calling it autonomous medicine that will claim or erode their jobs said Cohen.

This was clearly not his view. It’s also less about how PM can contribute to progress and more about its implementation. Still it suggested creating physician friendly tools and changing physician attitudes is at least a part of the challenge.

Capturing the full scope of the SC16 panel is a tall order. PM is a broad undertaking with many components. The NCI Cancer Moonshot is making progress daily, as demonstrated by today’s NVIDIA announcement. Precision medicine, which depends critically on HPC, matters.

[i] Streitz fiilled for Dimitri Kusnezov, Chief Scientist & Senior Advisor to the Secretary, U.S. Department of Energy, National Nuclear Security Administration, who was stuck in San Francisco because of travel problems.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire