D-Wave SC16 Update: What’s Bo Ewald Saying These Days

By John Russell

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July, Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15.

No doubt quantum computing is still in its infancy and remains a mystery to many but D-Wave, founded in 1999, remains committed to being part of the community that brings quantum computing to fruition. Today, it’s still a fairly small community. IBM, of course, is a noteworthy giant in the game. Many significant challenges remain – identifying suitable applications, establishing viable technology, and settling on the best kinds of ‘qubits’ (more seem to appear daily). So far there are few definitive answers.

ewald.jpgAll of that said, Robert ‘Bo’ Ewald, president of D-Wave and its chief evangelist, has a predictably glass half-full and quickly filling perspective. Yes, agrees Ewald, today’s machines, including D-Wave’s, are research machines hardly ready for prime time. Nevertheless, interest is steadily shifting from seeing quantum computing as an oddity to exploring how it might be practically used.

“We had a meeting yesterday with one of the systems vendors here and one of their customers. They invited us to sit in because they have a problem with a big search and we might be able to help.” This particularly problem involved searching DNA for patterns. More on how D-Wave would help attack such a problem below.

D-Wave’s newest customer, LANL, was so eager to get started that in June, before it received the machine, it issued a rapid response call to scientists to propose projects involving the use of the D-Wave machine. The goal was to expose as many LANL people as possible to D-Wave software development. About twenty proposals were made and eleven were funded.

D-Wave System
D-Wave System

Ewald said, “They are looking to cover a wide scope of applications covering such things like metallurgy problems to machine learning. Some are very detailed sort of physics and computer science optimization. For example, can you use the D-Wave machine to optimize use of the big supercomputers at Los Alamos because they are so big and complex, maybe it can help to crank a little bit more out of them.”

These projects are now ongoing. Here are three examples with their abstracts, followed by a summary list of the remainder, including links to PDFs of each:

  • Constrained Shortest Path Estimation on the D-Wave 2X: Accelerating Ionospheric Parameter Estimation Through Quantum Annealing (Zachary Baker, (PDF)) – “Shortest path computations are a general purpose solution to many problems, but high degrees of connectivity do not map well to the limited connectivity of the D-Wave 2X. By re-casting the problem as a series of 1-of-n choices linked by weighted connections, the shortest path problem is mapped to the quantum machine in a practical and useful way. This approach is demonstrated with an ionospheric parameter estimation problem.”
  • Graph Partitioning using the D-Wave for Electronic Structure Problems 
    (Susamn M. Mniszewski, Christian F. A. Negre, and Hayato Ushijima-Mwesigwa, (PDF))Graph-based methods are currently being applied to electronic structure problems for quantum molecular dynamics (QMD) simulations. Generating the density matrix as part of a timestep from many small sub-matrices (or sub-graphs) has been shown to be equivalent to more traditional methods (such as diagonalization). We have explored relevant graph partitioning/clustering methods and implementations that run on the D-Wave, 1) partitioning into equal parts minimizing the number of connections between parts and 2) clustering using modularity or community detection. Hierarchical approaches are used for more than two parts/clusters. “Proof of principle” results and comparisons are shown for example benchmark graphs and small material systems on the simulator and D-Wave machine. The DM, ToQ, SAPI, and QBSOLV tools were used in this work.
  • Generative Modeling for Machine Learning on the D-Wave (Sunil Thulasidasan, (PDF)) – “We will discuss training a generative machine learning model on the D-Wave. This model, known as a Restricted Boltzmann Machine, is often used as a building block for Deep Learning Systems because of its ability to learn features in an unsupervised way. Training such models involve sampling from a Boltzmann distribution at each step, which in theory is achieved by running a Markov Chain to convergence. This is the computational bottleneck in such systems and here we will explore the possibility of using the D-Wave — which is a physical Boltzmann machine — to accelerate this process by using the statistical properties of the energy distribution of states in the D-Wave. We will compare the generative ability of D-Wave to classical methods for a data set of hand-written digits.”
  • Efficient Combinatorial Optimization using Quantum Annealing (Hristo Djidjev, Guillaume Chapuis, Georg Hahn, and Guillaume Rizk, (PDF))
  • Solving Sparse Representations for Object Classification using the Quantum D-Wave 2X Machine (Garrett Kenyon and Nga Nguyen, (PDF))
  • A Programmable Embedder: A Staged Approach for Mapping Problems to the Chimera Graph (Marcus Daniels, (PDF))
  • Ising Simulations on the D-Wave QPU (Mike Rogers and Robert Singleton, (PDF))
  • D-Wave Quantum Computer as an Efficient Classical Sampler 
    (Michael Chertkov, Aric Hagberg, Andrey Lokhov, Theodor Misiakiewicz, Sidhant Misra, and Marc Vuffray (PDF))
  • Challenges and Successes of Solving Binary Quadratic Programming Benchmarks on the DW2X QPU (Carleton Coffrin, Harsh Nagarajan, and Russell Bent (PDF))
  • Topological Sphere Packing on the D-Wave (David Nicholaeff)
  • Quantum Uncertainty Quantification for Physical Models using ToQ.jl  (Daniel O’Malley and Velimir V. Vesselinov (PDF))

There’s lots of contention around what actually constitutes quantum computing and whose approach will work best, if at all, and for what classes of applications. It’s beyond the scope of this article to examine D-Wave’s adiabatic annealing approach in detail. It relies on low temperature superconductor qubits and the machine must be shielded from a variety of systems and environmental noise.

In brief, D-Wave’s approach is best used for problems that can be described as energy landscapes whose solution is finding the lowest energy state. Think of it as searching for the lowest valley within a mountainous landscape, an analogy favored by Ewald. The key, of course, is that quantum mechanics allows things to be in superposition – two states at the same time. In quantum computing a qubit can be a zero or one simultaneously, collapsing to a single state only when actually looked at. (Remember Schrodinger’s poor cat.)

Quantum theory, of course, is familiar to most in the HPC community and key to semiconductor functionality. Actually building a computable quantum bit is challenging and people argue all the time about whether current efforts actually succeed. D-Wave, with some help from TRW researchers, “came up with the idea of how to build a semiconductor quantum bit that’s really a Josephson junction,” said Ewald.

“In our case it is a loop of niobium, and we are able now to build them in standard CMOS fabs. We worked really hard to eliminate noise but each of those qubits, once we get them down to superconducting temperatures, the current in them is flowing in both directions simultaneously. That’s how we obtain a superposition.”

D-Wave Board
D-Wave Board

D-Wave qubits are organized into cells of eight. It’s possible to actually weight individual qubits using a magnetic field to bias them in one direction or the other (zero or one). D-Wave also a developed ‘coupler’ that can be used between qubits and control how the state of one qubit controls another. This is much simplified description. Using these elements it’s possible to program an energy landscape ‘circuit’ which after being excited will settle into its lowest state. Problems whose solutions can be mapped to this process are candidates.

“We are able to create a system which doesn’t add, doesn’t subtract, doesn’t shift left or right, but if you can map the problem onto an energy landscape, it collapses to the low energy solutions which this machine does about 10K per sec. We collapse to the lowest valley in the energy landscape probably. So it is probabilistic. Not deterministic,” said Ewald.

“You don’t run a problem once. You run it 73 times or 100 or 1000 and get a distribution of answers there. So if the energy landscape is like the Alps – steep mountains, narrow valleys, and a low valley someplace – and you run it a 100 times, 92 of the answers will be on that low valley. You can be pretty sure it’s the low valley. But if the problem is the Sahara desert where the elevation is a grain of sand, there are going to be low energies all over the desert and no two will be alike.”

In practice, you set the initial state with some boundary conditions. Excite the machine and let it settle back to its lowest state. Evaluate the results, adjust the boundary conditions, and repeat.

The more qubits you have, the larger energy landscape or problem space you can explore. Ewald is fond of noting D-Wave has been roughly keep pacing with Moore’s Law by doubling the number of qubits every 18-24 months. D-Waves new 2000 qubit processor doubles its previous generation D-Wave 2X system. “The new system also introduces control features that allow users to tune the quantum computational process to solve problems faster and find more diverse solutions when they exist. In early tests these new features have yielded performance improvements of up to 1000 times over the D-Wave 2X system,” according to the company.

Moving back to the SC16 meeting Ewald was invited to. The problem “was more like looking for a needle in a haystack in the lowest valley in Switzerland. We can get you into the lowest valley in Switzerland very fast, but once we are in the low valley, and it’s a flat landscape, you must traditional techniques. We have no clue how to find a needle. So the idea was start with our machine to find a low valley. In this case they are searching for patterns of DNA, and at the start its kind of a rugged landscape. Once you get close there’s more precision involved and traditional HPC resources would work better.”

Hardware development and getting smart people thinking about applications are among the biggest challenges, said Ewald, and the LANL effort is certainly a step forward on the latter problem. Likewise developing software tools for computational scientists to develop applications and ‘compile’ them on D-Wave is critical.

IBM has trumpeted its cloud quantum offering as a place for potential users to play. D-Wave too intends to offer a sandbox of tools. “We have been developing software tools and in the next month or so I think we will put the first incarnation of those out in the open source community and by doing that we are hoping to speed the development.”

Asked what he’d like to be able to report at next year’s SC17, Ewald settled on three areas.

  • D-Wave is, after all, a company. He hopes D-Wave will have attracted new customers quantum computing to kick tires and try out the machines.
  • Fielded machines. The new 2000-qubit processor is a big step forward. He hopes by next year there are more up and running to maintain momentum and tackle larger problems.
  • Software progress. Clearly this is a critical area, encompassing applications and developer tools. He’s hoping for greater community involvement and something to show for it.

Near term, he said, D-Wave systems sales are likely to be once-off machines to organization that want to have them and to get their hands on them and experiment. As software tools improves and become more used by the general community, he expects D-Wave systems to show up in the cloud. For the foreseeable future, you can forget up quantum computers showing in mobile devices and the like because the hardware still need too much specialized care and feeding.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This