D-Wave SC16 Update: What’s Bo Ewald Saying These Days

By John Russell

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July, Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15.

No doubt quantum computing is still in its infancy and remains a mystery to many but D-Wave, founded in 1999, remains committed to being part of the community that brings quantum computing to fruition. Today, it’s still a fairly small community. IBM, of course, is a noteworthy giant in the game. Many significant challenges remain – identifying suitable applications, establishing viable technology, and settling on the best kinds of ‘qubits’ (more seem to appear daily). So far there are few definitive answers.

ewald.jpgAll of that said, Robert ‘Bo’ Ewald, president of D-Wave and its chief evangelist, has a predictably glass half-full and quickly filling perspective. Yes, agrees Ewald, today’s machines, including D-Wave’s, are research machines hardly ready for prime time. Nevertheless, interest is steadily shifting from seeing quantum computing as an oddity to exploring how it might be practically used.

“We had a meeting yesterday with one of the systems vendors here and one of their customers. They invited us to sit in because they have a problem with a big search and we might be able to help.” This particularly problem involved searching DNA for patterns. More on how D-Wave would help attack such a problem below.

D-Wave’s newest customer, LANL, was so eager to get started that in June, before it received the machine, it issued a rapid response call to scientists to propose projects involving the use of the D-Wave machine. The goal was to expose as many LANL people as possible to D-Wave software development. About twenty proposals were made and eleven were funded.

D-Wave System
D-Wave System

Ewald said, “They are looking to cover a wide scope of applications covering such things like metallurgy problems to machine learning. Some are very detailed sort of physics and computer science optimization. For example, can you use the D-Wave machine to optimize use of the big supercomputers at Los Alamos because they are so big and complex, maybe it can help to crank a little bit more out of them.”

These projects are now ongoing. Here are three examples with their abstracts, followed by a summary list of the remainder, including links to PDFs of each:

  • Constrained Shortest Path Estimation on the D-Wave 2X: Accelerating Ionospheric Parameter Estimation Through Quantum Annealing (Zachary Baker, (PDF)) – “Shortest path computations are a general purpose solution to many problems, but high degrees of connectivity do not map well to the limited connectivity of the D-Wave 2X. By re-casting the problem as a series of 1-of-n choices linked by weighted connections, the shortest path problem is mapped to the quantum machine in a practical and useful way. This approach is demonstrated with an ionospheric parameter estimation problem.”
  • Graph Partitioning using the D-Wave for Electronic Structure Problems 
    (Susamn M. Mniszewski, Christian F. A. Negre, and Hayato Ushijima-Mwesigwa, (PDF))Graph-based methods are currently being applied to electronic structure problems for quantum molecular dynamics (QMD) simulations. Generating the density matrix as part of a timestep from many small sub-matrices (or sub-graphs) has been shown to be equivalent to more traditional methods (such as diagonalization). We have explored relevant graph partitioning/clustering methods and implementations that run on the D-Wave, 1) partitioning into equal parts minimizing the number of connections between parts and 2) clustering using modularity or community detection. Hierarchical approaches are used for more than two parts/clusters. “Proof of principle” results and comparisons are shown for example benchmark graphs and small material systems on the simulator and D-Wave machine. The DM, ToQ, SAPI, and QBSOLV tools were used in this work.
  • Generative Modeling for Machine Learning on the D-Wave (Sunil Thulasidasan, (PDF)) – “We will discuss training a generative machine learning model on the D-Wave. This model, known as a Restricted Boltzmann Machine, is often used as a building block for Deep Learning Systems because of its ability to learn features in an unsupervised way. Training such models involve sampling from a Boltzmann distribution at each step, which in theory is achieved by running a Markov Chain to convergence. This is the computational bottleneck in such systems and here we will explore the possibility of using the D-Wave — which is a physical Boltzmann machine — to accelerate this process by using the statistical properties of the energy distribution of states in the D-Wave. We will compare the generative ability of D-Wave to classical methods for a data set of hand-written digits.”
  • Efficient Combinatorial Optimization using Quantum Annealing (Hristo Djidjev, Guillaume Chapuis, Georg Hahn, and Guillaume Rizk, (PDF))
  • Solving Sparse Representations for Object Classification using the Quantum D-Wave 2X Machine (Garrett Kenyon and Nga Nguyen, (PDF))
  • A Programmable Embedder: A Staged Approach for Mapping Problems to the Chimera Graph (Marcus Daniels, (PDF))
  • Ising Simulations on the D-Wave QPU (Mike Rogers and Robert Singleton, (PDF))
  • D-Wave Quantum Computer as an Efficient Classical Sampler 
    (Michael Chertkov, Aric Hagberg, Andrey Lokhov, Theodor Misiakiewicz, Sidhant Misra, and Marc Vuffray (PDF))
  • Challenges and Successes of Solving Binary Quadratic Programming Benchmarks on the DW2X QPU (Carleton Coffrin, Harsh Nagarajan, and Russell Bent (PDF))
  • Topological Sphere Packing on the D-Wave (David Nicholaeff)
  • Quantum Uncertainty Quantification for Physical Models using ToQ.jl  (Daniel O’Malley and Velimir V. Vesselinov (PDF))

There’s lots of contention around what actually constitutes quantum computing and whose approach will work best, if at all, and for what classes of applications. It’s beyond the scope of this article to examine D-Wave’s adiabatic annealing approach in detail. It relies on low temperature superconductor qubits and the machine must be shielded from a variety of systems and environmental noise.

In brief, D-Wave’s approach is best used for problems that can be described as energy landscapes whose solution is finding the lowest energy state. Think of it as searching for the lowest valley within a mountainous landscape, an analogy favored by Ewald. The key, of course, is that quantum mechanics allows things to be in superposition – two states at the same time. In quantum computing a qubit can be a zero or one simultaneously, collapsing to a single state only when actually looked at. (Remember Schrodinger’s poor cat.)

Quantum theory, of course, is familiar to most in the HPC community and key to semiconductor functionality. Actually building a computable quantum bit is challenging and people argue all the time about whether current efforts actually succeed. D-Wave, with some help from TRW researchers, “came up with the idea of how to build a semiconductor quantum bit that’s really a Josephson junction,” said Ewald.

“In our case it is a loop of niobium, and we are able now to build them in standard CMOS fabs. We worked really hard to eliminate noise but each of those qubits, once we get them down to superconducting temperatures, the current in them is flowing in both directions simultaneously. That’s how we obtain a superposition.”

D-Wave Board
D-Wave Board

D-Wave qubits are organized into cells of eight. It’s possible to actually weight individual qubits using a magnetic field to bias them in one direction or the other (zero or one). D-Wave also a developed ‘coupler’ that can be used between qubits and control how the state of one qubit controls another. This is much simplified description. Using these elements it’s possible to program an energy landscape ‘circuit’ which after being excited will settle into its lowest state. Problems whose solutions can be mapped to this process are candidates.

“We are able to create a system which doesn’t add, doesn’t subtract, doesn’t shift left or right, but if you can map the problem onto an energy landscape, it collapses to the low energy solutions which this machine does about 10K per sec. We collapse to the lowest valley in the energy landscape probably. So it is probabilistic. Not deterministic,” said Ewald.

“You don’t run a problem once. You run it 73 times or 100 or 1000 and get a distribution of answers there. So if the energy landscape is like the Alps – steep mountains, narrow valleys, and a low valley someplace – and you run it a 100 times, 92 of the answers will be on that low valley. You can be pretty sure it’s the low valley. But if the problem is the Sahara desert where the elevation is a grain of sand, there are going to be low energies all over the desert and no two will be alike.”

In practice, you set the initial state with some boundary conditions. Excite the machine and let it settle back to its lowest state. Evaluate the results, adjust the boundary conditions, and repeat.

The more qubits you have, the larger energy landscape or problem space you can explore. Ewald is fond of noting D-Wave has been roughly keep pacing with Moore’s Law by doubling the number of qubits every 18-24 months. D-Waves new 2000 qubit processor doubles its previous generation D-Wave 2X system. “The new system also introduces control features that allow users to tune the quantum computational process to solve problems faster and find more diverse solutions when they exist. In early tests these new features have yielded performance improvements of up to 1000 times over the D-Wave 2X system,” according to the company.

Moving back to the SC16 meeting Ewald was invited to. The problem “was more like looking for a needle in a haystack in the lowest valley in Switzerland. We can get you into the lowest valley in Switzerland very fast, but once we are in the low valley, and it’s a flat landscape, you must traditional techniques. We have no clue how to find a needle. So the idea was start with our machine to find a low valley. In this case they are searching for patterns of DNA, and at the start its kind of a rugged landscape. Once you get close there’s more precision involved and traditional HPC resources would work better.”

Hardware development and getting smart people thinking about applications are among the biggest challenges, said Ewald, and the LANL effort is certainly a step forward on the latter problem. Likewise developing software tools for computational scientists to develop applications and ‘compile’ them on D-Wave is critical.

IBM has trumpeted its cloud quantum offering as a place for potential users to play. D-Wave too intends to offer a sandbox of tools. “We have been developing software tools and in the next month or so I think we will put the first incarnation of those out in the open source community and by doing that we are hoping to speed the development.”

Asked what he’d like to be able to report at next year’s SC17, Ewald settled on three areas.

  • D-Wave is, after all, a company. He hopes D-Wave will have attracted new customers quantum computing to kick tires and try out the machines.
  • Fielded machines. The new 2000-qubit processor is a big step forward. He hopes by next year there are more up and running to maintain momentum and tackle larger problems.
  • Software progress. Clearly this is a critical area, encompassing applications and developer tools. He’s hoping for greater community involvement and something to show for it.

Near term, he said, D-Wave systems sales are likely to be once-off machines to organization that want to have them and to get their hands on them and experiment. As software tools improves and become more used by the general community, he expects D-Wave systems to show up in the cloud. For the foreseeable future, you can forget up quantum computers showing in mobile devices and the like because the hardware still need too much specialized care and feeding.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This