D-Wave SC16 Update: What’s Bo Ewald Saying These Days

By John Russell

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July, Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15.

No doubt quantum computing is still in its infancy and remains a mystery to many but D-Wave, founded in 1999, remains committed to being part of the community that brings quantum computing to fruition. Today, it’s still a fairly small community. IBM, of course, is a noteworthy giant in the game. Many significant challenges remain – identifying suitable applications, establishing viable technology, and settling on the best kinds of ‘qubits’ (more seem to appear daily). So far there are few definitive answers.

ewald.jpgAll of that said, Robert ‘Bo’ Ewald, president of D-Wave and its chief evangelist, has a predictably glass half-full and quickly filling perspective. Yes, agrees Ewald, today’s machines, including D-Wave’s, are research machines hardly ready for prime time. Nevertheless, interest is steadily shifting from seeing quantum computing as an oddity to exploring how it might be practically used.

“We had a meeting yesterday with one of the systems vendors here and one of their customers. They invited us to sit in because they have a problem with a big search and we might be able to help.” This particularly problem involved searching DNA for patterns. More on how D-Wave would help attack such a problem below.

D-Wave’s newest customer, LANL, was so eager to get started that in June, before it received the machine, it issued a rapid response call to scientists to propose projects involving the use of the D-Wave machine. The goal was to expose as many LANL people as possible to D-Wave software development. About twenty proposals were made and eleven were funded.

D-Wave System
D-Wave System

Ewald said, “They are looking to cover a wide scope of applications covering such things like metallurgy problems to machine learning. Some are very detailed sort of physics and computer science optimization. For example, can you use the D-Wave machine to optimize use of the big supercomputers at Los Alamos because they are so big and complex, maybe it can help to crank a little bit more out of them.”

These projects are now ongoing. Here are three examples with their abstracts, followed by a summary list of the remainder, including links to PDFs of each:

  • Constrained Shortest Path Estimation on the D-Wave 2X: Accelerating Ionospheric Parameter Estimation Through Quantum Annealing (Zachary Baker, (PDF)) – “Shortest path computations are a general purpose solution to many problems, but high degrees of connectivity do not map well to the limited connectivity of the D-Wave 2X. By re-casting the problem as a series of 1-of-n choices linked by weighted connections, the shortest path problem is mapped to the quantum machine in a practical and useful way. This approach is demonstrated with an ionospheric parameter estimation problem.”
  • Graph Partitioning using the D-Wave for Electronic Structure Problems 
    (Susamn M. Mniszewski, Christian F. A. Negre, and Hayato Ushijima-Mwesigwa, (PDF))Graph-based methods are currently being applied to electronic structure problems for quantum molecular dynamics (QMD) simulations. Generating the density matrix as part of a timestep from many small sub-matrices (or sub-graphs) has been shown to be equivalent to more traditional methods (such as diagonalization). We have explored relevant graph partitioning/clustering methods and implementations that run on the D-Wave, 1) partitioning into equal parts minimizing the number of connections between parts and 2) clustering using modularity or community detection. Hierarchical approaches are used for more than two parts/clusters. “Proof of principle” results and comparisons are shown for example benchmark graphs and small material systems on the simulator and D-Wave machine. The DM, ToQ, SAPI, and QBSOLV tools were used in this work.
  • Generative Modeling for Machine Learning on the D-Wave (Sunil Thulasidasan, (PDF)) – “We will discuss training a generative machine learning model on the D-Wave. This model, known as a Restricted Boltzmann Machine, is often used as a building block for Deep Learning Systems because of its ability to learn features in an unsupervised way. Training such models involve sampling from a Boltzmann distribution at each step, which in theory is achieved by running a Markov Chain to convergence. This is the computational bottleneck in such systems and here we will explore the possibility of using the D-Wave — which is a physical Boltzmann machine — to accelerate this process by using the statistical properties of the energy distribution of states in the D-Wave. We will compare the generative ability of D-Wave to classical methods for a data set of hand-written digits.”
  • Efficient Combinatorial Optimization using Quantum Annealing (Hristo Djidjev, Guillaume Chapuis, Georg Hahn, and Guillaume Rizk, (PDF))
  • Solving Sparse Representations for Object Classification using the Quantum D-Wave 2X Machine (Garrett Kenyon and Nga Nguyen, (PDF))
  • A Programmable Embedder: A Staged Approach for Mapping Problems to the Chimera Graph (Marcus Daniels, (PDF))
  • Ising Simulations on the D-Wave QPU (Mike Rogers and Robert Singleton, (PDF))
  • D-Wave Quantum Computer as an Efficient Classical Sampler 
    (Michael Chertkov, Aric Hagberg, Andrey Lokhov, Theodor Misiakiewicz, Sidhant Misra, and Marc Vuffray (PDF))
  • Challenges and Successes of Solving Binary Quadratic Programming Benchmarks on the DW2X QPU (Carleton Coffrin, Harsh Nagarajan, and Russell Bent (PDF))
  • Topological Sphere Packing on the D-Wave (David Nicholaeff)
  • Quantum Uncertainty Quantification for Physical Models using ToQ.jl  (Daniel O’Malley and Velimir V. Vesselinov (PDF))

There’s lots of contention around what actually constitutes quantum computing and whose approach will work best, if at all, and for what classes of applications. It’s beyond the scope of this article to examine D-Wave’s adiabatic annealing approach in detail. It relies on low temperature superconductor qubits and the machine must be shielded from a variety of systems and environmental noise.

In brief, D-Wave’s approach is best used for problems that can be described as energy landscapes whose solution is finding the lowest energy state. Think of it as searching for the lowest valley within a mountainous landscape, an analogy favored by Ewald. The key, of course, is that quantum mechanics allows things to be in superposition – two states at the same time. In quantum computing a qubit can be a zero or one simultaneously, collapsing to a single state only when actually looked at. (Remember Schrodinger’s poor cat.)

Quantum theory, of course, is familiar to most in the HPC community and key to semiconductor functionality. Actually building a computable quantum bit is challenging and people argue all the time about whether current efforts actually succeed. D-Wave, with some help from TRW researchers, “came up with the idea of how to build a semiconductor quantum bit that’s really a Josephson junction,” said Ewald.

“In our case it is a loop of niobium, and we are able now to build them in standard CMOS fabs. We worked really hard to eliminate noise but each of those qubits, once we get them down to superconducting temperatures, the current in them is flowing in both directions simultaneously. That’s how we obtain a superposition.”

D-Wave Board
D-Wave Board

D-Wave qubits are organized into cells of eight. It’s possible to actually weight individual qubits using a magnetic field to bias them in one direction or the other (zero or one). D-Wave also a developed ‘coupler’ that can be used between qubits and control how the state of one qubit controls another. This is much simplified description. Using these elements it’s possible to program an energy landscape ‘circuit’ which after being excited will settle into its lowest state. Problems whose solutions can be mapped to this process are candidates.

“We are able to create a system which doesn’t add, doesn’t subtract, doesn’t shift left or right, but if you can map the problem onto an energy landscape, it collapses to the low energy solutions which this machine does about 10K per sec. We collapse to the lowest valley in the energy landscape probably. So it is probabilistic. Not deterministic,” said Ewald.

“You don’t run a problem once. You run it 73 times or 100 or 1000 and get a distribution of answers there. So if the energy landscape is like the Alps – steep mountains, narrow valleys, and a low valley someplace – and you run it a 100 times, 92 of the answers will be on that low valley. You can be pretty sure it’s the low valley. But if the problem is the Sahara desert where the elevation is a grain of sand, there are going to be low energies all over the desert and no two will be alike.”

In practice, you set the initial state with some boundary conditions. Excite the machine and let it settle back to its lowest state. Evaluate the results, adjust the boundary conditions, and repeat.

The more qubits you have, the larger energy landscape or problem space you can explore. Ewald is fond of noting D-Wave has been roughly keep pacing with Moore’s Law by doubling the number of qubits every 18-24 months. D-Waves new 2000 qubit processor doubles its previous generation D-Wave 2X system. “The new system also introduces control features that allow users to tune the quantum computational process to solve problems faster and find more diverse solutions when they exist. In early tests these new features have yielded performance improvements of up to 1000 times over the D-Wave 2X system,” according to the company.

Moving back to the SC16 meeting Ewald was invited to. The problem “was more like looking for a needle in a haystack in the lowest valley in Switzerland. We can get you into the lowest valley in Switzerland very fast, but once we are in the low valley, and it’s a flat landscape, you must traditional techniques. We have no clue how to find a needle. So the idea was start with our machine to find a low valley. In this case they are searching for patterns of DNA, and at the start its kind of a rugged landscape. Once you get close there’s more precision involved and traditional HPC resources would work better.”

Hardware development and getting smart people thinking about applications are among the biggest challenges, said Ewald, and the LANL effort is certainly a step forward on the latter problem. Likewise developing software tools for computational scientists to develop applications and ‘compile’ them on D-Wave is critical.

IBM has trumpeted its cloud quantum offering as a place for potential users to play. D-Wave too intends to offer a sandbox of tools. “We have been developing software tools and in the next month or so I think we will put the first incarnation of those out in the open source community and by doing that we are hoping to speed the development.”

Asked what he’d like to be able to report at next year’s SC17, Ewald settled on three areas.

  • D-Wave is, after all, a company. He hopes D-Wave will have attracted new customers quantum computing to kick tires and try out the machines.
  • Fielded machines. The new 2000-qubit processor is a big step forward. He hopes by next year there are more up and running to maintain momentum and tackle larger problems.
  • Software progress. Clearly this is a critical area, encompassing applications and developer tools. He’s hoping for greater community involvement and something to show for it.

Near term, he said, D-Wave systems sales are likely to be once-off machines to organization that want to have them and to get their hands on them and experiment. As software tools improves and become more used by the general community, he expects D-Wave systems to show up in the cloud. For the foreseeable future, you can forget up quantum computers showing in mobile devices and the like because the hardware still need too much specialized care and feeding.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora sys Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over t Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for Amazon.com

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear we Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0

August 2, 2022

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world's largest datacenters and fastest supercomputers are built. The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0... Read more…

Inside an Ambitious Play to Shake Up HPC and the Texas Grid

August 2, 2022

With HPC demand ballooning and Moore’s law slowing down, modern supercomputers often undergo exhaustive efficiency efforts aimed at ameliorating exorbitant energy bills and correspondingly large carbon footprints. Others, meanwhile, are asking: is min-maxing the best option, or are there easier paths to reducing the bills and emissions of... Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers


ISC 2022 Booth Video Tours


Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow