Nvidia Sees Bright Future for AI Supercomputing

By Tiffany Trader

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Most prominent wins were achieving the number one spot on the Green500 list with new in-house DGX-1 supercomputer, SaturnV, and partnering with the National Cancer Institute, the U.S. Department of Energy (DOE) and several national laboratories to accelerate cancer research as part of the Cancer Moonshot initiative.

The company kicked off its SC activities with a press briefing on Monday (Nov. 14), during which CEO Jen-Hsun Huang characterized 2016 as a tipping point for the GPU computing approach popularized by Nvidia for over a decade.

Not surprisingly, Huang’s main message was that the GPU computing era has arrived. Throughout the hour-long talk, Huang would revisit the theme of deep learning as both a supercomputing problem and a supercomputing opportunity.

“We believe that supercomputers ought to be designed as AI supercomputers – meaning it has to be good at both computational science as well as data science – that building a machine that’s only good at data science doesn’t make sense and building a supercomputer that’s only good at computational science doesn’t make sense,” he said.

“On the one hand, deep learning requires an enormous amount of data throughput processing – this way of developing software where the computers write software themselves inspired by a lot of data processing behind it is a very important approach to computing but it also has the wonderful opportunity to benefit supercomputing as well, solving problems for science that hasn’t been possible before today,” said Huang.

Huang’s view is that traditional numerical HPC is not going anywhere, but will exist side by side with machine learning methods.

“I’m a big fan of using math when you can; we should use AI when you can’t,” he said. “For example what’s the equation of a cat? It’s probably very similar to the equation for a dog – two ears, four legs, a tail. And so there are a lot of areas where equations don’t work and that’s where I see AI – search problems, recommendation problems, likelihood problems, where there’s either too much data, incomplete data, or no laws of physics that support it. So where do I feel like eating tonight – there’s no laws of physics for that. There’s a lot of these type of problems that we simply can’t solve – I think that they’re going to coexist.”

While Nvidia is enabling parallel computing via thousands of CUDA cores combined with the CUDA programing framework, the CEO emphasized the necessity of a performant central processing unit. “Almost everything we do we start with a strong CPU,” said Huang. “We still believe in Amdahl’s law; we believe that code has a lot of single threaded parts to it and this is an area that we want to continue to be good at.”

nvidia-nvlink-dgx-1-ibm-p8

The two servers currently shipping with the NVLink P100 GPU – Nvidia’s DGX-1 server and IBM’s Minsky platform – speak to this goal. The DGX-1 connects eight NVLink’d Pascal P100s to two 20-core Intel Xeon E5-2698 v4 chips. The IBM Minsky server leverages two Power8 CPUs and four P100 GPUs connected by NVlink up to the CPUs.

Nvidia’s 124-node supercomputer, SaturnV plays a crucial role in Nvidia’s plans to usher in AI supercomputing. The machine debuted on the 48th TOP500 list at number 28 with 3.3 petaflops Linpack (4.9 petaflops peak). Even more impressively, it nabbed the number one spot on the Green500 list achieving more than 8.17 gigaflops/watt. That’s a 42 percent improvement from the 6.67 gigaflops/watt delivered by the most efficient machine on the previous TOP500 list. Extrapolating to exascale gives us 105.7 MW. If we go with a semi-“relaxed” exascale power allowance of 30 MW (the original DARPA target was 20 MW), this is less than one-fourth the planned power consumption of US exascale systems. Three years ago, the extrapolated delta was over a 7X.

SaturnV – its name inspired by the original Moonshot – will be a critical part of the CANDLE (CANcer Distributed Learning Environment) project (covered here). Announced last month, CANDLE’s mission is to exploit high performance computing (HPC), machine learning and data analytics technologies to advance precision oncology. Huang said the partners will be working together to develop “the world’s first deep learning framework designed for exascale.”

“It’s going to be really hard,” he added. “That’s why we’re working with the four DOE labs and have all standardized on the same architecture – SaturnV is the biggest one of them but we’re all using exactly the same architecture and it’s all GPU accelerated and we’re going to develop a framework that allows us to scale to get to exascale.”

Huang noted that when you apply deep learning FLOPS math – aka 16-bit floating point operations as opposed to the HPC norm of 64-bit FLOPS, exascale is not far away at all.

The [IBM/Nvidia] CORAL machines are on track for 2018 with 300 petaflops peak FP64, which comes out to 1,200 peak FP16, Huang pointed out. “For AI, FP16 is fine, now in some areas we need FP32, we need variable precision, but that’s the point,” he said. “I think CORAL is going to be the world’s fastest AI supercomputer [and] I think that we didn’t know it then but I believe that we are building an exascale machine already.”

It’s a fair point that dialing down the bits increases data throughput (boosting FLOPS), but as one analyst at the event said, “calling it exascale is changing the rules.”

Lending more insight to Nvidia’s plans was Solutions Architect Louis Capps, who presented at the Green500 BoF on November 16.

“This is completely a research platform,” he said of SaturnV. “We’re going to have academics using it. We’re going to have partnerships, collaborations, and internally, we’re working on our deep learning research and our HPC research.”

Embedded, robotics, automotive, and hyperscale computing are all major focus areas, but Capps and Huang both were most effusive about the opportunities at the convergence of data science and HPC. “We’re just now starting to bridge where real HPC work is converging with deep learning,” said Capps.

nvidia_dgx_saturnv-800xSaturnV is organized into five 3U boxes per rack, with 15 kilowatt of power on each rack and some 25 racks total. While the press photo of SaturnV indicates 10 servers per rack, this is not reflective of what’s inside. “We could not put that many in ours,” said Capps. “We put this in a datacenter which is not HPC. It was an IT datacenter originally.”

SaturnV was one of two systems on the newly published TOP500 list to employ the Pascal-based P100 GPUs. The number two greenest super, Piz Daint is using the PCIe variants. Installed at the Swiss National Supercomputing Centre, Piz Daint delivers an energy-efficiency rating of 7.45 gigaflops/watt. Refreshed with the new P100 hardware, Piz Daint achieved 9.8 petaflops on the Linpack benchmark, securing it the eighth spot on the latest list.

Notably, every single one of the top ten systems on the Green500 list is using some flavor of acceleration or manycore. There is no pure-play traditional x86 in the bunch.

green500-nov-2016-top-10
Source: Top500/Green500

A compelling testament to this approach came from Thomas Schulthess, director of the Swiss National Supercomputing Centre, where Nvidia K80 GPUs have been used for operational weather forecasting for over a year now. “I know the HPC community has a problem with the heterogeneous approach,” he said. “We’ve done a lot of analysis on this issue. We asked, what would the goals we have at exascale look like if we build a homogeneous Xeon-based system, and there’s no way that you will run significant problems that are significantly bigger and faster than we do today in 5-6 years at exascale if you build it based on a Xeon system.

“The message to the application folks is, you’ve had time to think about it now, but now there is no more choice. If you want to run at exascale, it is going to be on Xeon Phi or GPU-accelerated or the lightweight core, almost Cell-like architectures that we see on TaihuLight.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This