Nvidia Sees Bright Future for AI Supercomputing

By Tiffany Trader

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Most prominent wins were achieving the number one spot on the Green500 list with new in-house DGX-1 supercomputer, SaturnV, and partnering with the National Cancer Institute, the U.S. Department of Energy (DOE) and several national laboratories to accelerate cancer research as part of the Cancer Moonshot initiative.

The company kicked off its SC activities with a press briefing on Monday (Nov. 14), during which CEO Jen-Hsun Huang characterized 2016 as a tipping point for the GPU computing approach popularized by Nvidia for over a decade.

Not surprisingly, Huang’s main message was that the GPU computing era has arrived. Throughout the hour-long talk, Huang would revisit the theme of deep learning as both a supercomputing problem and a supercomputing opportunity.

“We believe that supercomputers ought to be designed as AI supercomputers – meaning it has to be good at both computational science as well as data science – that building a machine that’s only good at data science doesn’t make sense and building a supercomputer that’s only good at computational science doesn’t make sense,” he said.

“On the one hand, deep learning requires an enormous amount of data throughput processing – this way of developing software where the computers write software themselves inspired by a lot of data processing behind it is a very important approach to computing but it also has the wonderful opportunity to benefit supercomputing as well, solving problems for science that hasn’t been possible before today,” said Huang.

Huang’s view is that traditional numerical HPC is not going anywhere, but will exist side by side with machine learning methods.

“I’m a big fan of using math when you can; we should use AI when you can’t,” he said. “For example what’s the equation of a cat? It’s probably very similar to the equation for a dog – two ears, four legs, a tail. And so there are a lot of areas where equations don’t work and that’s where I see AI – search problems, recommendation problems, likelihood problems, where there’s either too much data, incomplete data, or no laws of physics that support it. So where do I feel like eating tonight – there’s no laws of physics for that. There’s a lot of these type of problems that we simply can’t solve – I think that they’re going to coexist.”

While Nvidia is enabling parallel computing via thousands of CUDA cores combined with the CUDA programing framework, the CEO emphasized the necessity of a performant central processing unit. “Almost everything we do we start with a strong CPU,” said Huang. “We still believe in Amdahl’s law; we believe that code has a lot of single threaded parts to it and this is an area that we want to continue to be good at.”

nvidia-nvlink-dgx-1-ibm-p8

The two servers currently shipping with the NVLink P100 GPU – Nvidia’s DGX-1 server and IBM’s Minsky platform – speak to this goal. The DGX-1 connects eight NVLink’d Pascal P100s to two 20-core Intel Xeon E5-2698 v4 chips. The IBM Minsky server leverages two Power8 CPUs and four P100 GPUs connected by NVlink up to the CPUs.

Nvidia’s 124-node supercomputer, SaturnV plays a crucial role in Nvidia’s plans to usher in AI supercomputing. The machine debuted on the 48th TOP500 list at number 28 with 3.3 petaflops Linpack (4.9 petaflops peak). Even more impressively, it nabbed the number one spot on the Green500 list achieving more than 8.17 gigaflops/watt. That’s a 42 percent improvement from the 6.67 gigaflops/watt delivered by the most efficient machine on the previous TOP500 list. Extrapolating to exascale gives us 105.7 MW. If we go with a semi-“relaxed” exascale power allowance of 30 MW (the original DARPA target was 20 MW), this is less than one-fourth the planned power consumption of US exascale systems. Three years ago, the extrapolated delta was over a 7X.

SaturnV – its name inspired by the original Moonshot – will be a critical part of the CANDLE (CANcer Distributed Learning Environment) project (covered here). Announced last month, CANDLE’s mission is to exploit high performance computing (HPC), machine learning and data analytics technologies to advance precision oncology. Huang said the partners will be working together to develop “the world’s first deep learning framework designed for exascale.”

“It’s going to be really hard,” he added. “That’s why we’re working with the four DOE labs and have all standardized on the same architecture – SaturnV is the biggest one of them but we’re all using exactly the same architecture and it’s all GPU accelerated and we’re going to develop a framework that allows us to scale to get to exascale.”

Huang noted that when you apply deep learning FLOPS math – aka 16-bit floating point operations as opposed to the HPC norm of 64-bit FLOPS, exascale is not far away at all.

The [IBM/Nvidia] CORAL machines are on track for 2018 with 300 petaflops peak FP64, which comes out to 1,200 peak FP16, Huang pointed out. “For AI, FP16 is fine, now in some areas we need FP32, we need variable precision, but that’s the point,” he said. “I think CORAL is going to be the world’s fastest AI supercomputer [and] I think that we didn’t know it then but I believe that we are building an exascale machine already.”

It’s a fair point that dialing down the bits increases data throughput (boosting FLOPS), but as one analyst at the event said, “calling it exascale is changing the rules.”

Lending more insight to Nvidia’s plans was Solutions Architect Louis Capps, who presented at the Green500 BoF on November 16.

“This is completely a research platform,” he said of SaturnV. “We’re going to have academics using it. We’re going to have partnerships, collaborations, and internally, we’re working on our deep learning research and our HPC research.”

Embedded, robotics, automotive, and hyperscale computing are all major focus areas, but Capps and Huang both were most effusive about the opportunities at the convergence of data science and HPC. “We’re just now starting to bridge where real HPC work is converging with deep learning,” said Capps.

nvidia_dgx_saturnv-800xSaturnV is organized into five 3U boxes per rack, with 15 kilowatt of power on each rack and some 25 racks total. While the press photo of SaturnV indicates 10 servers per rack, this is not reflective of what’s inside. “We could not put that many in ours,” said Capps. “We put this in a datacenter which is not HPC. It was an IT datacenter originally.”

SaturnV was one of two systems on the newly published TOP500 list to employ the Pascal-based P100 GPUs. The number two greenest super, Piz Daint is using the PCIe variants. Installed at the Swiss National Supercomputing Centre, Piz Daint delivers an energy-efficiency rating of 7.45 gigaflops/watt. Refreshed with the new P100 hardware, Piz Daint achieved 9.8 petaflops on the Linpack benchmark, securing it the eighth spot on the latest list.

Notably, every single one of the top ten systems on the Green500 list is using some flavor of acceleration or manycore. There is no pure-play traditional x86 in the bunch.

green500-nov-2016-top-10
Source: Top500/Green500

A compelling testament to this approach came from Thomas Schulthess, director of the Swiss National Supercomputing Centre, where Nvidia K80 GPUs have been used for operational weather forecasting for over a year now. “I know the HPC community has a problem with the heterogeneous approach,” he said. “We’ve done a lot of analysis on this issue. We asked, what would the goals we have at exascale look like if we build a homogeneous Xeon-based system, and there’s no way that you will run significant problems that are significantly bigger and faster than we do today in 5-6 years at exascale if you build it based on a Xeon system.

“The message to the application folks is, you’ve had time to think about it now, but now there is no more choice. If you want to run at exascale, it is going to be on Xeon Phi or GPU-accelerated or the lightweight core, almost Cell-like architectures that we see on TaihuLight.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Intel, Micro Debut Quad-Level Cell NAND Flash

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By George Leopold

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This