Nvidia Sees Bright Future for AI Supercomputing

By Tiffany Trader

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Most prominent wins were achieving the number one spot on the Green500 list with new in-house DGX-1 supercomputer, SaturnV, and partnering with the National Cancer Institute, the U.S. Department of Energy (DOE) and several national laboratories to accelerate cancer research as part of the Cancer Moonshot initiative.

The company kicked off its SC activities with a press briefing on Monday (Nov. 14), during which CEO Jen-Hsun Huang characterized 2016 as a tipping point for the GPU computing approach popularized by Nvidia for over a decade.

Not surprisingly, Huang’s main message was that the GPU computing era has arrived. Throughout the hour-long talk, Huang would revisit the theme of deep learning as both a supercomputing problem and a supercomputing opportunity.

“We believe that supercomputers ought to be designed as AI supercomputers – meaning it has to be good at both computational science as well as data science – that building a machine that’s only good at data science doesn’t make sense and building a supercomputer that’s only good at computational science doesn’t make sense,” he said.

“On the one hand, deep learning requires an enormous amount of data throughput processing – this way of developing software where the computers write software themselves inspired by a lot of data processing behind it is a very important approach to computing but it also has the wonderful opportunity to benefit supercomputing as well, solving problems for science that hasn’t been possible before today,” said Huang.

Huang’s view is that traditional numerical HPC is not going anywhere, but will exist side by side with machine learning methods.

“I’m a big fan of using math when you can; we should use AI when you can’t,” he said. “For example what’s the equation of a cat? It’s probably very similar to the equation for a dog – two ears, four legs, a tail. And so there are a lot of areas where equations don’t work and that’s where I see AI – search problems, recommendation problems, likelihood problems, where there’s either too much data, incomplete data, or no laws of physics that support it. So where do I feel like eating tonight – there’s no laws of physics for that. There’s a lot of these type of problems that we simply can’t solve – I think that they’re going to coexist.”

While Nvidia is enabling parallel computing via thousands of CUDA cores combined with the CUDA programing framework, the CEO emphasized the necessity of a performant central processing unit. “Almost everything we do we start with a strong CPU,” said Huang. “We still believe in Amdahl’s law; we believe that code has a lot of single threaded parts to it and this is an area that we want to continue to be good at.”

nvidia-nvlink-dgx-1-ibm-p8

The two servers currently shipping with the NVLink P100 GPU – Nvidia’s DGX-1 server and IBM’s Minsky platform – speak to this goal. The DGX-1 connects eight NVLink’d Pascal P100s to two 20-core Intel Xeon E5-2698 v4 chips. The IBM Minsky server leverages two Power8 CPUs and four P100 GPUs connected by NVlink up to the CPUs.

Nvidia’s 124-node supercomputer, SaturnV plays a crucial role in Nvidia’s plans to usher in AI supercomputing. The machine debuted on the 48th TOP500 list at number 28 with 3.3 petaflops Linpack (4.9 petaflops peak). Even more impressively, it nabbed the number one spot on the Green500 list achieving more than 8.17 gigaflops/watt. That’s a 42 percent improvement from the 6.67 gigaflops/watt delivered by the most efficient machine on the previous TOP500 list. Extrapolating to exascale gives us 105.7 MW. If we go with a semi-“relaxed” exascale power allowance of 30 MW (the original DARPA target was 20 MW), this is less than one-fourth the planned power consumption of US exascale systems. Three years ago, the extrapolated delta was over a 7X.

SaturnV – its name inspired by the original Moonshot – will be a critical part of the CANDLE (CANcer Distributed Learning Environment) project (covered here). Announced last month, CANDLE’s mission is to exploit high performance computing (HPC), machine learning and data analytics technologies to advance precision oncology. Huang said the partners will be working together to develop “the world’s first deep learning framework designed for exascale.”

“It’s going to be really hard,” he added. “That’s why we’re working with the four DOE labs and have all standardized on the same architecture – SaturnV is the biggest one of them but we’re all using exactly the same architecture and it’s all GPU accelerated and we’re going to develop a framework that allows us to scale to get to exascale.”

Huang noted that when you apply deep learning FLOPS math – aka 16-bit floating point operations as opposed to the HPC norm of 64-bit FLOPS, exascale is not far away at all.

The [IBM/Nvidia] CORAL machines are on track for 2018 with 300 petaflops peak FP64, which comes out to 1,200 peak FP16, Huang pointed out. “For AI, FP16 is fine, now in some areas we need FP32, we need variable precision, but that’s the point,” he said. “I think CORAL is going to be the world’s fastest AI supercomputer [and] I think that we didn’t know it then but I believe that we are building an exascale machine already.”

It’s a fair point that dialing down the bits increases data throughput (boosting FLOPS), but as one analyst at the event said, “calling it exascale is changing the rules.”

Lending more insight to Nvidia’s plans was Solutions Architect Louis Capps, who presented at the Green500 BoF on November 16.

“This is completely a research platform,” he said of SaturnV. “We’re going to have academics using it. We’re going to have partnerships, collaborations, and internally, we’re working on our deep learning research and our HPC research.”

Embedded, robotics, automotive, and hyperscale computing are all major focus areas, but Capps and Huang both were most effusive about the opportunities at the convergence of data science and HPC. “We’re just now starting to bridge where real HPC work is converging with deep learning,” said Capps.

nvidia_dgx_saturnv-800xSaturnV is organized into five 3U boxes per rack, with 15 kilowatt of power on each rack and some 25 racks total. While the press photo of SaturnV indicates 10 servers per rack, this is not reflective of what’s inside. “We could not put that many in ours,” said Capps. “We put this in a datacenter which is not HPC. It was an IT datacenter originally.”

SaturnV was one of two systems on the newly published TOP500 list to employ the Pascal-based P100 GPUs. The number two greenest super, Piz Daint is using the PCIe variants. Installed at the Swiss National Supercomputing Centre, Piz Daint delivers an energy-efficiency rating of 7.45 gigaflops/watt. Refreshed with the new P100 hardware, Piz Daint achieved 9.8 petaflops on the Linpack benchmark, securing it the eighth spot on the latest list.

Notably, every single one of the top ten systems on the Green500 list is using some flavor of acceleration or manycore. There is no pure-play traditional x86 in the bunch.

green500-nov-2016-top-10
Source: Top500/Green500

A compelling testament to this approach came from Thomas Schulthess, director of the Swiss National Supercomputing Centre, where Nvidia K80 GPUs have been used for operational weather forecasting for over a year now. “I know the HPC community has a problem with the heterogeneous approach,” he said. “We’ve done a lot of analysis on this issue. We asked, what would the goals we have at exascale look like if we build a homogeneous Xeon-based system, and there’s no way that you will run significant problems that are significantly bigger and faster than we do today in 5-6 years at exascale if you build it based on a Xeon system.

“The message to the application folks is, you’ve had time to think about it now, but now there is no more choice. If you want to run at exascale, it is going to be on Xeon Phi or GPU-accelerated or the lightweight core, almost Cell-like architectures that we see on TaihuLight.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This