Seagate-led SAGE Project Delivers Update on Exascale Goals

By John Russell

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. It outlines technical details of progress to date and architectural plans moving forward. Of particular note is progress on co-design for use cases and applications expected to benefit most from exascale. There’s also been a fair amount of work to be able to accommodate big data and traditional HPC workflows in the same environment.

“We’ve tried to give ourselves lofty goals,” said Malcolm Muggeridge, senior engineering director at Seagate based in the U.K. who is leading the initiative. “We would like to become the platform of choice in exascale for storage solutions and will have the technology addressing that space in the 2022 timeframe. The main piece of work that has been completed [so far] is co-design activities.”

You may recall that SAGE (StorAGe for Exascale Data Centric Computing (SAGE) system aims to implement a Big Data/Extreme Computing (BDEC) and High Performance Data Analytics (HPDA) capable infrastructure suitable for Extreme scales – including Exascale and beyond. SAGE is one of 15 projects recently funded under Horizon 2020. Direct funding is actually through the European Technology Platforms (ETP) organization – “industry-led stakeholder groups recognized by the European Commission as key actors in driving innovation, knowledge transfer and European competitiveness. ETPs develop research and innovation agendas and roadmaps for action at EU and national level to be supported by both private and public funding.”

sage-seagate-architectureThe new white paper is a fairly extensive document that follows a nine-month formal project review last June and includes work completed since. Among the topics covered are: platform requirements; systems architecture; platform components; and ecosystem elements. Launched in September of 2015, SAGE tackles eight research areas: “the study of the 1) application use cases co-designing solutions to address 2) Percipient Storage Methods, 3) Advanced Object Storage, and 4) tools for I/O optimization, supporting 5) next generation storage media and developing a supporting ecosystem of 6) Extreme Data Management, 7) Programming techniques and 8) Extreme Data Analysis tools.”

According to the report, the SAGE storage system will be capable of efficiently storing and retrieving immense volumes of data at extreme scales, with the added functionality of “percipience” or the ability to accept and perform user defined computations integral to the storage system. SAGE will be built around the Mero object storage software platform and its supporting ecosystem of tools and techniques, that will work together to provide the required functionalities and scaling desired by extreme scale workflows.

One important goal is accommodating new storage technologies, such as non-volatile RAM (NVRAM). Leveraging object storage to assist ‘in-memory, closer-to-memory” computing is another. In an earlier interview Sai Narasimhamurthy, Seagate research staff engineer responsible for coordinating the technical work, told HPCwire that the stack would “have memory at the top, various NVRAM technologies in the middle, of course you have your flash technology as well as part of the stack, and then you have scratch disks and then archival disks.”

“You could have an object, or a piece of it, lying in high speed memory, a piece of it in NVRAM, and a piece of the object lying in scratch based upon the usage profile of the object,” explained Narasimhamurthy. “The view of the object is transparent to the application, it’s just I0 to an object, but on the back end you could have various types of layout which could be very interesting because you could optimize your layout for performance or for resiliency. You could do all sorts of things.”

sage-seagate-codesignClearly there are big goals for the project. Co-design is a critical early element in defining functional requirements, emphasized Muggeridge, “We have carefully selected use cases that reflect these data-centric applications. The use cases provide specific inputs that are designed to fine tune/modify the framework for the SAGE architecture.”

Muggeridge noted there is range of requirements drivers. The report calls out: inputs from the BDEC community and the US Department of Energy labs; data needs for big science, as exemplified by the Square Kilometer Array and the Human Brain Project; and Extreme scale I/O requirements drafted by the ETP; and extreme scale data needs highlighted by the HPDA community. The information was gathered mostly through workshops.

Top-level objectives have also been established and are largely familiar. One calls for the ability “to store and retrieve extreme volumes of data approaching orders of ~Exabyte for a given problem”. Another is the ability to manage workflows that include data from simulations and instruments. Not surprisingly, data IO rates, data integrity, data analytics, among other capabilities are being targeted. Indeed the first part of the project has been largely ‘definitional’ with a roll out of demonstrations planned for the next year.

Use of co-design principles to inform these objectives is a distinguishing feature of the project. SAGE has selected several use cases (applications) and spelled out in detail the parameters being measured. Use cases “cover a broad range of domains, including data from some of the world’s largest scientific experiments (including one of the world’s largest nuclear fusion facilities and one of the largest synchrotrons in Europe), aside from extremely data-centric HPC codes.” Below is a table with the uses cases selected.

sage-seagate-use-cases

So far, SAGE has gathered the first formal list of inputs from all of the specified use cases. “This phase included gathering inputs on formal I/O characterization, SAGE architecture analysis, data retention characterization and data scaling analysis, which was an analytical study of how data and I/O requirements of the use cases would scale on a future basis.”

sage-seagate-metrics

The SAGE system is built on multiple tiers of storage device hardware technology (see figure below). SAGE does not require a specific type of storage device technology, but typically it would include at least one NVRAM tier (Intel 3DxPoint technology is a strong contender at the moment), at least one flash tier and at least one disk tier. Together, these tiers are housed in standard form-factor enclosures and provide their own compute capability, enabled by standard x86 embedded processing components. Moving up the system stack, compute capability increases for faster, lower latency devices.

Mero, the object storage software first developed by Xyratex and now being extended by Seagate, is layered on top of this hardware stack, providing fundamental management of object I/O and storage across tiers. Essentially, Mero forms the core of the SAGE system. Mero is presented to users through the Clovis API. Everything above Clovis forms the SAGE ecosystem components.

sage-seagate-system-stack

Much remains to be done but it seems as if SAGE is making steady progress. Demonstrations, some at the Julich Supercomputing Centre, are expected over the next year or so. This latest paper is best read in full for current technical details of SAGE plans.

Link to new SAGE paper (Data Storage for Extreme Scale): http://sagestorage.eu/sites/default/files/Sage%20White%20Paper%20v1.0.pdf

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This