Seagate-led SAGE Project Delivers Update on Exascale Goals

By John Russell

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. It outlines technical details of progress to date and architectural plans moving forward. Of particular note is progress on co-design for use cases and applications expected to benefit most from exascale. There’s also been a fair amount of work to be able to accommodate big data and traditional HPC workflows in the same environment.

“We’ve tried to give ourselves lofty goals,” said Malcolm Muggeridge, senior engineering director at Seagate based in the U.K. who is leading the initiative. “We would like to become the platform of choice in exascale for storage solutions and will have the technology addressing that space in the 2022 timeframe. The main piece of work that has been completed [so far] is co-design activities.”

You may recall that SAGE (StorAGe for Exascale Data Centric Computing (SAGE) system aims to implement a Big Data/Extreme Computing (BDEC) and High Performance Data Analytics (HPDA) capable infrastructure suitable for Extreme scales – including Exascale and beyond. SAGE is one of 15 projects recently funded under Horizon 2020. Direct funding is actually through the European Technology Platforms (ETP) organization – “industry-led stakeholder groups recognized by the European Commission as key actors in driving innovation, knowledge transfer and European competitiveness. ETPs develop research and innovation agendas and roadmaps for action at EU and national level to be supported by both private and public funding.”

sage-seagate-architectureThe new white paper is a fairly extensive document that follows a nine-month formal project review last June and includes work completed since. Among the topics covered are: platform requirements; systems architecture; platform components; and ecosystem elements. Launched in September of 2015, SAGE tackles eight research areas: “the study of the 1) application use cases co-designing solutions to address 2) Percipient Storage Methods, 3) Advanced Object Storage, and 4) tools for I/O optimization, supporting 5) next generation storage media and developing a supporting ecosystem of 6) Extreme Data Management, 7) Programming techniques and 8) Extreme Data Analysis tools.”

According to the report, the SAGE storage system will be capable of efficiently storing and retrieving immense volumes of data at extreme scales, with the added functionality of “percipience” or the ability to accept and perform user defined computations integral to the storage system. SAGE will be built around the Mero object storage software platform and its supporting ecosystem of tools and techniques, that will work together to provide the required functionalities and scaling desired by extreme scale workflows.

One important goal is accommodating new storage technologies, such as non-volatile RAM (NVRAM). Leveraging object storage to assist ‘in-memory, closer-to-memory” computing is another. In an earlier interview Sai Narasimhamurthy, Seagate research staff engineer responsible for coordinating the technical work, told HPCwire that the stack would “have memory at the top, various NVRAM technologies in the middle, of course you have your flash technology as well as part of the stack, and then you have scratch disks and then archival disks.”

“You could have an object, or a piece of it, lying in high speed memory, a piece of it in NVRAM, and a piece of the object lying in scratch based upon the usage profile of the object,” explained Narasimhamurthy. “The view of the object is transparent to the application, it’s just I0 to an object, but on the back end you could have various types of layout which could be very interesting because you could optimize your layout for performance or for resiliency. You could do all sorts of things.”

sage-seagate-codesignClearly there are big goals for the project. Co-design is a critical early element in defining functional requirements, emphasized Muggeridge, “We have carefully selected use cases that reflect these data-centric applications. The use cases provide specific inputs that are designed to fine tune/modify the framework for the SAGE architecture.”

Muggeridge noted there is range of requirements drivers. The report calls out: inputs from the BDEC community and the US Department of Energy labs; data needs for big science, as exemplified by the Square Kilometer Array and the Human Brain Project; and Extreme scale I/O requirements drafted by the ETP; and extreme scale data needs highlighted by the HPDA community. The information was gathered mostly through workshops.

Top-level objectives have also been established and are largely familiar. One calls for the ability “to store and retrieve extreme volumes of data approaching orders of ~Exabyte for a given problem”. Another is the ability to manage workflows that include data from simulations and instruments. Not surprisingly, data IO rates, data integrity, data analytics, among other capabilities are being targeted. Indeed the first part of the project has been largely ‘definitional’ with a roll out of demonstrations planned for the next year.

Use of co-design principles to inform these objectives is a distinguishing feature of the project. SAGE has selected several use cases (applications) and spelled out in detail the parameters being measured. Use cases “cover a broad range of domains, including data from some of the world’s largest scientific experiments (including one of the world’s largest nuclear fusion facilities and one of the largest synchrotrons in Europe), aside from extremely data-centric HPC codes.” Below is a table with the uses cases selected.

sage-seagate-use-cases

So far, SAGE has gathered the first formal list of inputs from all of the specified use cases. “This phase included gathering inputs on formal I/O characterization, SAGE architecture analysis, data retention characterization and data scaling analysis, which was an analytical study of how data and I/O requirements of the use cases would scale on a future basis.”

sage-seagate-metrics

The SAGE system is built on multiple tiers of storage device hardware technology (see figure below). SAGE does not require a specific type of storage device technology, but typically it would include at least one NVRAM tier (Intel 3DxPoint technology is a strong contender at the moment), at least one flash tier and at least one disk tier. Together, these tiers are housed in standard form-factor enclosures and provide their own compute capability, enabled by standard x86 embedded processing components. Moving up the system stack, compute capability increases for faster, lower latency devices.

Mero, the object storage software first developed by Xyratex and now being extended by Seagate, is layered on top of this hardware stack, providing fundamental management of object I/O and storage across tiers. Essentially, Mero forms the core of the SAGE system. Mero is presented to users through the Clovis API. Everything above Clovis forms the SAGE ecosystem components.

sage-seagate-system-stack

Much remains to be done but it seems as if SAGE is making steady progress. Demonstrations, some at the Julich Supercomputing Centre, are expected over the next year or so. This latest paper is best read in full for current technical details of SAGE plans.

Link to new SAGE paper (Data Storage for Extreme Scale): http://sagestorage.eu/sites/default/files/Sage%20White%20Paper%20v1.0.pdf

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit and Sierra. The new AC922 server pairs two Power9 CPUs with f Read more…

By Tiffany Trader

PEZY President Arrested, Charged with Fraud

December 6, 2017

The head of Japanese supercomputing firm PEZY Computing was arrested Tuesday on suspicion of defrauding a government institution of 431 million yen (~$3.8 million). According to reports in the Japanese press, PEZY founde Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Azure Debuts AMD EPYC Instances for Storage Optimized Workloads

December 5, 2017

AMD’s return to the data center received a boost today when Microsoft Azure announced introduction of instances based on AMD’s EPYC microprocessors. The new instances – Lv2-Series of Virtual Machine – use the EPY Read more…

By John Russell

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Share This