Seagate-led SAGE Project Delivers Update on Exascale Goals

By John Russell

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. It outlines technical details of progress to date and architectural plans moving forward. Of particular note is progress on co-design for use cases and applications expected to benefit most from exascale. There’s also been a fair amount of work to be able to accommodate big data and traditional HPC workflows in the same environment.

“We’ve tried to give ourselves lofty goals,” said Malcolm Muggeridge, senior engineering director at Seagate based in the U.K. who is leading the initiative. “We would like to become the platform of choice in exascale for storage solutions and will have the technology addressing that space in the 2022 timeframe. The main piece of work that has been completed [so far] is co-design activities.”

You may recall that SAGE (StorAGe for Exascale Data Centric Computing (SAGE) system aims to implement a Big Data/Extreme Computing (BDEC) and High Performance Data Analytics (HPDA) capable infrastructure suitable for Extreme scales – including Exascale and beyond. SAGE is one of 15 projects recently funded under Horizon 2020. Direct funding is actually through the European Technology Platforms (ETP) organization – “industry-led stakeholder groups recognized by the European Commission as key actors in driving innovation, knowledge transfer and European competitiveness. ETPs develop research and innovation agendas and roadmaps for action at EU and national level to be supported by both private and public funding.”

sage-seagate-architectureThe new white paper is a fairly extensive document that follows a nine-month formal project review last June and includes work completed since. Among the topics covered are: platform requirements; systems architecture; platform components; and ecosystem elements. Launched in September of 2015, SAGE tackles eight research areas: “the study of the 1) application use cases co-designing solutions to address 2) Percipient Storage Methods, 3) Advanced Object Storage, and 4) tools for I/O optimization, supporting 5) next generation storage media and developing a supporting ecosystem of 6) Extreme Data Management, 7) Programming techniques and 8) Extreme Data Analysis tools.”

According to the report, the SAGE storage system will be capable of efficiently storing and retrieving immense volumes of data at extreme scales, with the added functionality of “percipience” or the ability to accept and perform user defined computations integral to the storage system. SAGE will be built around the Mero object storage software platform and its supporting ecosystem of tools and techniques, that will work together to provide the required functionalities and scaling desired by extreme scale workflows.

One important goal is accommodating new storage technologies, such as non-volatile RAM (NVRAM). Leveraging object storage to assist ‘in-memory, closer-to-memory” computing is another. In an earlier interview Sai Narasimhamurthy, Seagate research staff engineer responsible for coordinating the technical work, told HPCwire that the stack would “have memory at the top, various NVRAM technologies in the middle, of course you have your flash technology as well as part of the stack, and then you have scratch disks and then archival disks.”

“You could have an object, or a piece of it, lying in high speed memory, a piece of it in NVRAM, and a piece of the object lying in scratch based upon the usage profile of the object,” explained Narasimhamurthy. “The view of the object is transparent to the application, it’s just I0 to an object, but on the back end you could have various types of layout which could be very interesting because you could optimize your layout for performance or for resiliency. You could do all sorts of things.”

sage-seagate-codesignClearly there are big goals for the project. Co-design is a critical early element in defining functional requirements, emphasized Muggeridge, “We have carefully selected use cases that reflect these data-centric applications. The use cases provide specific inputs that are designed to fine tune/modify the framework for the SAGE architecture.”

Muggeridge noted there is range of requirements drivers. The report calls out: inputs from the BDEC community and the US Department of Energy labs; data needs for big science, as exemplified by the Square Kilometer Array and the Human Brain Project; and Extreme scale I/O requirements drafted by the ETP; and extreme scale data needs highlighted by the HPDA community. The information was gathered mostly through workshops.

Top-level objectives have also been established and are largely familiar. One calls for the ability “to store and retrieve extreme volumes of data approaching orders of ~Exabyte for a given problem”. Another is the ability to manage workflows that include data from simulations and instruments. Not surprisingly, data IO rates, data integrity, data analytics, among other capabilities are being targeted. Indeed the first part of the project has been largely ‘definitional’ with a roll out of demonstrations planned for the next year.

Use of co-design principles to inform these objectives is a distinguishing feature of the project. SAGE has selected several use cases (applications) and spelled out in detail the parameters being measured. Use cases “cover a broad range of domains, including data from some of the world’s largest scientific experiments (including one of the world’s largest nuclear fusion facilities and one of the largest synchrotrons in Europe), aside from extremely data-centric HPC codes.” Below is a table with the uses cases selected.

sage-seagate-use-cases

So far, SAGE has gathered the first formal list of inputs from all of the specified use cases. “This phase included gathering inputs on formal I/O characterization, SAGE architecture analysis, data retention characterization and data scaling analysis, which was an analytical study of how data and I/O requirements of the use cases would scale on a future basis.”

sage-seagate-metrics

The SAGE system is built on multiple tiers of storage device hardware technology (see figure below). SAGE does not require a specific type of storage device technology, but typically it would include at least one NVRAM tier (Intel 3DxPoint technology is a strong contender at the moment), at least one flash tier and at least one disk tier. Together, these tiers are housed in standard form-factor enclosures and provide their own compute capability, enabled by standard x86 embedded processing components. Moving up the system stack, compute capability increases for faster, lower latency devices.

Mero, the object storage software first developed by Xyratex and now being extended by Seagate, is layered on top of this hardware stack, providing fundamental management of object I/O and storage across tiers. Essentially, Mero forms the core of the SAGE system. Mero is presented to users through the Clovis API. Everything above Clovis forms the SAGE ecosystem components.

sage-seagate-system-stack

Much remains to be done but it seems as if SAGE is making steady progress. Demonstrations, some at the Julich Supercomputing Centre, are expected over the next year or so. This latest paper is best read in full for current technical details of SAGE plans.

Link to new SAGE paper (Data Storage for Extreme Scale): http://sagestorage.eu/sites/default/files/Sage%20White%20Paper%20v1.0.pdf

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This