Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

By Jan Rowell

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: a leadership-class, 200 petaflops supercomputer to be installed at Argonne National Laboratory in 2018. The new system—part of the Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) initiative—aims to be 20 times more powerful than Argonne’s current Mira system. Power consumption will top out at a peak of 16.5 megawatts, just 3.4 times Mira’s energy level. Among other requirements, Aurora must support mission-critical computing from day one, bolster US competitiveness, and move the industry significantly closer to exascale computing. It needs to deliver breakthrough capabilities for both traditional HPC and data analytic applications. And it must mesh with future product plans for both Intel and Cray, Intel’s key collaborator on the initiative.

This article is the first in a series that goes behind the scenes to explore the making of the forthcoming Aurora supercomputer. We’ll share what we learned in interviews with more than a dozen Intel technologists, plus insights from individuals at Cray and the DOE’s Argonne Leadership Computing Facility (ALCF), where Aurora will reside and where technologists are co-designing the system.

You’ll hear how the three organizations are working together to manage the risks and deliver an optimal solution for DOE science. You’ll get a peek under the hood and a glimpse of the technology highlights. And you’ll see the human side. What draws people to such a high-stakes project? What keeps them awake at night? What do they hope their work will mean for DOE—and for HPC users everywhere?

Opportunities and Risks

Aurora is a landmark supercomputer that represents significant new opportunities for Intel, Cray, DOE, and the industry. Aurora will not only enable a new wave of scientific and technical computing for DOE and its research partners, its innovations, delivered at smaller scales by Intel and Cray, will also help drive HPC’s continued expansion into enterprise data centers around the world. These smaller-scale systems will no doubt spur breakthroughs for researchers and commercial users alike.

With Intel as the prime contractor, Aurora offers a high-visibility showcase for Intel Scalable System Framework (Intel SSF)—a chance to demonstrate the full power of integrating Intel’s latest technology advances within a flexible, unified architecture. Aurora will incorporate the forthcoming Intel Xeon Phi processor, codenamed Knights Hill, deployed on next-generation 10nm process technology. The system’s interconnect will utilize a next-generation Intel Omni-Path fabric implemented in silicon photonics, along with an advanced memory hierarchy. The file system, based on Intel Enterprise Edition for Lustre Software, will provide more than 150 petabytes capacity, with throughput of more than a terabyte per second. Intel HPC Orchestrator will help simplify integration, deployment, and operations.

Aurora also advances Intel’s ability to excel at the systems thinking that’s essential to keeping HPC on its faster-than-Moore’s-Law performance curve. “Aurora is the flagship to show what Intel SSF is capable of,” says Jake Wood, CORAL program manager at Intel Federal. “It’s all about systems-level thinking and unprecedented technology integration.”

ALCF Intel Cray leadership meeting
(left to right) Rick Stevens, Argonne; Susan Coghlan, Argonne; Al Gara, Intel; Mark Seager, Intel; Raj Hazra, Intel; Barry Bolding, Cray; Gary Geissler, Cray; Paul Messina, Argonne; Mike Papka, Argonne (Source: Intel)

But there are a range of risks, as well—from the basic financial responsibilities of the prime contractor, to designing with leading-edge technologies, to managing such a large and complex undertaking. The Aurora design includes next-generation Intel technologies that were only on the drawing boards when the project started. The undertaking involves deep collaboration among DOE, Cray, and Intel, and the breadth of innovations means that Intel is drawing resources from multiple divisions across the company. The CORAL team at Intel bridges enterprise and government, chip design and software solutions, platform engineering and system packaging, and more. The scale of the project presents new challenges for everything from software design to system validation.

And although Intel has been part of numerous government contracts, you have to look back to the vaunted Accelerated Strategic Computing Initiative (ASCI) Red supercomputer—the first teraflops system—to find such a large-scale program where Intel was the prime contractor rather than ingredient supplier.

Meet the Maestro

While Al Gara is the architect of the Aurora supercomputer, Jake Wood is the program manager and project foreman, responsible for ensuring that all the moving parts line up correctly, the juggling pins stay up in the air, and the system comes together as specified. He is also program manager for Intel’s other DOE collaborations, including R&D for exascale computing.

jake-wood-500x
After 18 years in manufacturing operations, Jake Wood became CORAL program manager for Intel. His job is much the same: get in the middle of super-smart people and provide a framework for them to solve big, complex problems.

Wood is a 20-year Intel veteran who grew up a town or two over from Intel’s Jones Farm campus west of Portland, Oregon. He headed to Chicago for college, earning BS degrees in Industrial Engineering and Manufacturing Engineering from Northwestern University. But Wood was eager to get back to the camping and fishing opportunities of the Northwest. Intel was staffing up its Fab 5 fabrication facility in Aloha, Oregon, and Wood signed on. His first position was night shift operations manager, helping to deliver first-generation Intel Pentium processors.

After advancing through a variety of manufacturing engineering positions, Wood took advantage of an opportunity that he says ended up transforming his professional life. In 2005, Intel sent him and his family to MIT for two years to participate in MIT’s Leaders for Manufacturing Program, now called the Leaders for Global Operations. Wood came away with a Master’s in Civil Engineering, an MBA from MIT’s Sloan School of Management, and a vastly expanded set of skills and insights.

“MIT gave me more context and insight around the business side of manufacturing—more business acumen and critical thinking in the manufacturing space,” Wood recalls. When he returned to Oregon, he moved into manufacturing management and leadership positions at Intel’s D1D facility, overseeing the work of hundreds of technicians and their managers, and ensuring their work kept the factories operating on Intel’s precision cadence.

A Framework for Brilliant People to Solve Problems

The CORAL position came at a time when Wood was looking to stretch in a new direction, and Intel was looking for someone with a unique skillset to drive the execution of the Aurora program plan. “Intel knew this program needed a different skillset to go drive a physical deployment, handle system integration, and take on all the other aspects of being the prime contractor,” Wood says. “It was a match, and I Jumped in with both feet.”

Wood thought he was making a 180-degree turn from his leadership roles in manufacturing management. In fact, although he’s on the other end of the manufacturing pipeline now, his current position is remarkably similar at its core to his previous ones.

“My job is still to get in the middle of the best and brightest technical people in the world in their fields, and help them solve very complex, interrelated problems,” he says. “I’m not there to be smarter than them or to solve their technical issues, but to provide context, give them a framework to more easily solve their problems, and help them drive into the space where we all need to be to meet our objectives. Take away the brilliant person with a PhD in some aspect of materials engineering and swap in the brilliant person with a PhD in some aspect of high performance computing, and it’s very, very similar.”

And, he adds, “I’m absolutely loving it.”

Checkpoint: Theta and Beyond

When we spoke with Wood in October, he said Aurora is on track for first-rack delivery in Q4 2018, and the CORAL teams at DOE, Intel, and Cray are celebrating the on-time installation and acceptance of the Theta supercomputer. Theta is based on the Cray XC40 platform with Intel Xeon Phi processors, previously codenamed Knights Landing.

Theta is one of the key scientific platforms for the CORAL program and serves as an important early Aurora production system for the ALCF. At 8.5 petaflops, the system is a bridge between the Mira and Aurora systems, and an advancement of Cray’s leadership in adaptive supercomputing. “Theta represents a huge success,” Wood says. “It’s a small system relative to Aurora, but it you look at it on its own, it’s very much a major supercomputer. It’s a significant platform for DOE science.”

The Theta installation went very smoothly, according to Susan Coghlan, deputy division director of ALCF. “Argonne drove an aggressive timeline to have the system installed and accepted, and we all had to work as a very tight team to make it happen,” she says. “We all pulled together, and with a lot of planning and preparation, we had the hardware installed in an afternoon. It was unbelievably smooth and insanely fast—one of the best I’ve ever seen. We also learned a lot about how to work together, and that’s going to benefit us on the Aurora install.”

Theta is now supporting ALCF’s Early Science computing and paving the way to Aurora. ALCF put on an four-day workshop for participants in the Theta Early Science Program to get their hands on the system, experience the development and runtime environments, work with ALCF staff to fine-tune their key applications, and assess their scalability. By the workshop’s end, Coghlan reports, all 12 early science teams had their codes up and running on Theta, some at full scale.

Now, the teams are using Theta to address real-world research problems. “Theta is a fabulous stepping stone to Aurora, and Aurora is going to be a really big step toward exascale and the leaps in science that it is going to make possible,” says Coghlan. “It’s exciting.”

­­­­­­­­­­­­­­­­­­­_________________

Watch for part 2 of our Aurora series, which explores some of Aurora’s technology challenges and how Intel is stepping up its game to meet them. Subsequent articles will drill down on the close collaboration among Intel, Cray, and Argonne to create Aurora, and the system’s likely impacts.

About the Author

Jan Rowell covers technology trends in high-performance computing, life sciences, healthcare, and other fields.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This