Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

By Jan Rowell

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: a leadership-class, 200 petaflops supercomputer to be installed at Argonne National Laboratory in 2018. The new system—part of the Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) initiative—aims to be 20 times more powerful than Argonne’s current Mira system. Power consumption will top out at a peak of 16.5 megawatts, just 3.4 times Mira’s energy level. Among other requirements, Aurora must support mission-critical computing from day one, bolster US competitiveness, and move the industry significantly closer to exascale computing. It needs to deliver breakthrough capabilities for both traditional HPC and data analytic applications. And it must mesh with future product plans for both Intel and Cray, Intel’s key collaborator on the initiative.

This article is the first in a series that goes behind the scenes to explore the making of the forthcoming Aurora supercomputer. We’ll share what we learned in interviews with more than a dozen Intel technologists, plus insights from individuals at Cray and the DOE’s Argonne Leadership Computing Facility (ALCF), where Aurora will reside and where technologists are co-designing the system.

You’ll hear how the three organizations are working together to manage the risks and deliver an optimal solution for DOE science. You’ll get a peek under the hood and a glimpse of the technology highlights. And you’ll see the human side. What draws people to such a high-stakes project? What keeps them awake at night? What do they hope their work will mean for DOE—and for HPC users everywhere?

Opportunities and Risks

Aurora is a landmark supercomputer that represents significant new opportunities for Intel, Cray, DOE, and the industry. Aurora will not only enable a new wave of scientific and technical computing for DOE and its research partners, its innovations, delivered at smaller scales by Intel and Cray, will also help drive HPC’s continued expansion into enterprise data centers around the world. These smaller-scale systems will no doubt spur breakthroughs for researchers and commercial users alike.

With Intel as the prime contractor, Aurora offers a high-visibility showcase for Intel Scalable System Framework (Intel SSF)—a chance to demonstrate the full power of integrating Intel’s latest technology advances within a flexible, unified architecture. Aurora will incorporate the forthcoming Intel Xeon Phi processor, codenamed Knights Hill, deployed on next-generation 10nm process technology. The system’s interconnect will utilize a next-generation Intel Omni-Path fabric implemented in silicon photonics, along with an advanced memory hierarchy. The file system, based on Intel Enterprise Edition for Lustre Software, will provide more than 150 petabytes capacity, with throughput of more than a terabyte per second. Intel HPC Orchestrator will help simplify integration, deployment, and operations.

Aurora also advances Intel’s ability to excel at the systems thinking that’s essential to keeping HPC on its faster-than-Moore’s-Law performance curve. “Aurora is the flagship to show what Intel SSF is capable of,” says Jake Wood, CORAL program manager at Intel Federal. “It’s all about systems-level thinking and unprecedented technology integration.”

ALCF Intel Cray leadership meeting
(left to right) Rick Stevens, Argonne; Susan Coghlan, Argonne; Al Gara, Intel; Mark Seager, Intel; Raj Hazra, Intel; Barry Bolding, Cray; Gary Geissler, Cray; Paul Messina, Argonne; Mike Papka, Argonne (Source: Intel)

But there are a range of risks, as well—from the basic financial responsibilities of the prime contractor, to designing with leading-edge technologies, to managing such a large and complex undertaking. The Aurora design includes next-generation Intel technologies that were only on the drawing boards when the project started. The undertaking involves deep collaboration among DOE, Cray, and Intel, and the breadth of innovations means that Intel is drawing resources from multiple divisions across the company. The CORAL team at Intel bridges enterprise and government, chip design and software solutions, platform engineering and system packaging, and more. The scale of the project presents new challenges for everything from software design to system validation.

And although Intel has been part of numerous government contracts, you have to look back to the vaunted Accelerated Strategic Computing Initiative (ASCI) Red supercomputer—the first teraflops system—to find such a large-scale program where Intel was the prime contractor rather than ingredient supplier.

Meet the Maestro

While Al Gara is the architect of the Aurora supercomputer, Jake Wood is the program manager and project foreman, responsible for ensuring that all the moving parts line up correctly, the juggling pins stay up in the air, and the system comes together as specified. He is also program manager for Intel’s other DOE collaborations, including R&D for exascale computing.

jake-wood-500x
After 18 years in manufacturing operations, Jake Wood became CORAL program manager for Intel. His job is much the same: get in the middle of super-smart people and provide a framework for them to solve big, complex problems.

Wood is a 20-year Intel veteran who grew up a town or two over from Intel’s Jones Farm campus west of Portland, Oregon. He headed to Chicago for college, earning BS degrees in Industrial Engineering and Manufacturing Engineering from Northwestern University. But Wood was eager to get back to the camping and fishing opportunities of the Northwest. Intel was staffing up its Fab 5 fabrication facility in Aloha, Oregon, and Wood signed on. His first position was night shift operations manager, helping to deliver first-generation Intel Pentium processors.

After advancing through a variety of manufacturing engineering positions, Wood took advantage of an opportunity that he says ended up transforming his professional life. In 2005, Intel sent him and his family to MIT for two years to participate in MIT’s Leaders for Manufacturing Program, now called the Leaders for Global Operations. Wood came away with a Master’s in Civil Engineering, an MBA from MIT’s Sloan School of Management, and a vastly expanded set of skills and insights.

“MIT gave me more context and insight around the business side of manufacturing—more business acumen and critical thinking in the manufacturing space,” Wood recalls. When he returned to Oregon, he moved into manufacturing management and leadership positions at Intel’s D1D facility, overseeing the work of hundreds of technicians and their managers, and ensuring their work kept the factories operating on Intel’s precision cadence.

A Framework for Brilliant People to Solve Problems

The CORAL position came at a time when Wood was looking to stretch in a new direction, and Intel was looking for someone with a unique skillset to drive the execution of the Aurora program plan. “Intel knew this program needed a different skillset to go drive a physical deployment, handle system integration, and take on all the other aspects of being the prime contractor,” Wood says. “It was a match, and I Jumped in with both feet.”

Wood thought he was making a 180-degree turn from his leadership roles in manufacturing management. In fact, although he’s on the other end of the manufacturing pipeline now, his current position is remarkably similar at its core to his previous ones.

“My job is still to get in the middle of the best and brightest technical people in the world in their fields, and help them solve very complex, interrelated problems,” he says. “I’m not there to be smarter than them or to solve their technical issues, but to provide context, give them a framework to more easily solve their problems, and help them drive into the space where we all need to be to meet our objectives. Take away the brilliant person with a PhD in some aspect of materials engineering and swap in the brilliant person with a PhD in some aspect of high performance computing, and it’s very, very similar.”

And, he adds, “I’m absolutely loving it.”

Checkpoint: Theta and Beyond

When we spoke with Wood in October, he said Aurora is on track for first-rack delivery in Q4 2018, and the CORAL teams at DOE, Intel, and Cray are celebrating the on-time installation and acceptance of the Theta supercomputer. Theta is based on the Cray XC40 platform with Intel Xeon Phi processors, previously codenamed Knights Landing.

Theta is one of the key scientific platforms for the CORAL program and serves as an important early Aurora production system for the ALCF. At 8.5 petaflops, the system is a bridge between the Mira and Aurora systems, and an advancement of Cray’s leadership in adaptive supercomputing. “Theta represents a huge success,” Wood says. “It’s a small system relative to Aurora, but it you look at it on its own, it’s very much a major supercomputer. It’s a significant platform for DOE science.”

The Theta installation went very smoothly, according to Susan Coghlan, deputy division director of ALCF. “Argonne drove an aggressive timeline to have the system installed and accepted, and we all had to work as a very tight team to make it happen,” she says. “We all pulled together, and with a lot of planning and preparation, we had the hardware installed in an afternoon. It was unbelievably smooth and insanely fast—one of the best I’ve ever seen. We also learned a lot about how to work together, and that’s going to benefit us on the Aurora install.”

Theta is now supporting ALCF’s Early Science computing and paving the way to Aurora. ALCF put on an four-day workshop for participants in the Theta Early Science Program to get their hands on the system, experience the development and runtime environments, work with ALCF staff to fine-tune their key applications, and assess their scalability. By the workshop’s end, Coghlan reports, all 12 early science teams had their codes up and running on Theta, some at full scale.

Now, the teams are using Theta to address real-world research problems. “Theta is a fabulous stepping stone to Aurora, and Aurora is going to be a really big step toward exascale and the leaps in science that it is going to make possible,” says Coghlan. “It’s exciting.”

­­­­­­­­­­­­­­­­­­­_________________

Watch for part 2 of our Aurora series, which explores some of Aurora’s technology challenges and how Intel is stepping up its game to meet them. Subsequent articles will drill down on the close collaboration among Intel, Cray, and Argonne to create Aurora, and the system’s likely impacts.

About the Author

Jan Rowell covers technology trends in high-performance computing, life sciences, healthcare, and other fields.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC will Build OzStar – Swinburne’s New Supercomputer to Study Gravity

August 16, 2017

Dell EMC announced yesterday it is building a new supercomputer – the OzStar – for the Swinburne University of Technology (Australia) in support the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based system on the STREAM benchmark and on a test case running ANS Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capa Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This