Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

By Jan Rowell

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: a leadership-class, 200 petaflops supercomputer to be installed at Argonne National Laboratory in 2018. The new system—part of the Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) initiative—aims to be 20 times more powerful than Argonne’s current Mira system. Power consumption will top out at a peak of 16.5 megawatts, just 3.4 times Mira’s energy level. Among other requirements, Aurora must support mission-critical computing from day one, bolster US competitiveness, and move the industry significantly closer to exascale computing. It needs to deliver breakthrough capabilities for both traditional HPC and data analytic applications. And it must mesh with future product plans for both Intel and Cray, Intel’s key collaborator on the initiative.

This article is the first in a series that goes behind the scenes to explore the making of the forthcoming Aurora supercomputer. We’ll share what we learned in interviews with more than a dozen Intel technologists, plus insights from individuals at Cray and the DOE’s Argonne Leadership Computing Facility (ALCF), where Aurora will reside and where technologists are co-designing the system.

You’ll hear how the three organizations are working together to manage the risks and deliver an optimal solution for DOE science. You’ll get a peek under the hood and a glimpse of the technology highlights. And you’ll see the human side. What draws people to such a high-stakes project? What keeps them awake at night? What do they hope their work will mean for DOE—and for HPC users everywhere?

Opportunities and Risks

Aurora is a landmark supercomputer that represents significant new opportunities for Intel, Cray, DOE, and the industry. Aurora will not only enable a new wave of scientific and technical computing for DOE and its research partners, its innovations, delivered at smaller scales by Intel and Cray, will also help drive HPC’s continued expansion into enterprise data centers around the world. These smaller-scale systems will no doubt spur breakthroughs for researchers and commercial users alike.

With Intel as the prime contractor, Aurora offers a high-visibility showcase for Intel Scalable System Framework (Intel SSF)—a chance to demonstrate the full power of integrating Intel’s latest technology advances within a flexible, unified architecture. Aurora will incorporate the forthcoming Intel Xeon Phi processor, codenamed Knights Hill, deployed on next-generation 10nm process technology. The system’s interconnect will utilize a next-generation Intel Omni-Path fabric implemented in silicon photonics, along with an advanced memory hierarchy. The file system, based on Intel Enterprise Edition for Lustre Software, will provide more than 150 petabytes capacity, with throughput of more than a terabyte per second. Intel HPC Orchestrator will help simplify integration, deployment, and operations.

Aurora also advances Intel’s ability to excel at the systems thinking that’s essential to keeping HPC on its faster-than-Moore’s-Law performance curve. “Aurora is the flagship to show what Intel SSF is capable of,” says Jake Wood, CORAL program manager at Intel Federal. “It’s all about systems-level thinking and unprecedented technology integration.”

ALCF Intel Cray leadership meeting
(left to right) Rick Stevens, Argonne; Susan Coghlan, Argonne; Al Gara, Intel; Mark Seager, Intel; Raj Hazra, Intel; Barry Bolding, Cray; Gary Geissler, Cray; Paul Messina, Argonne; Mike Papka, Argonne (Source: Intel)

But there are a range of risks, as well—from the basic financial responsibilities of the prime contractor, to designing with leading-edge technologies, to managing such a large and complex undertaking. The Aurora design includes next-generation Intel technologies that were only on the drawing boards when the project started. The undertaking involves deep collaboration among DOE, Cray, and Intel, and the breadth of innovations means that Intel is drawing resources from multiple divisions across the company. The CORAL team at Intel bridges enterprise and government, chip design and software solutions, platform engineering and system packaging, and more. The scale of the project presents new challenges for everything from software design to system validation.

And although Intel has been part of numerous government contracts, you have to look back to the vaunted Accelerated Strategic Computing Initiative (ASCI) Red supercomputer—the first teraflops system—to find such a large-scale program where Intel was the prime contractor rather than ingredient supplier.

Meet the Maestro

While Al Gara is the architect of the Aurora supercomputer, Jake Wood is the program manager and project foreman, responsible for ensuring that all the moving parts line up correctly, the juggling pins stay up in the air, and the system comes together as specified. He is also program manager for Intel’s other DOE collaborations, including R&D for exascale computing.

jake-wood-500x
After 18 years in manufacturing operations, Jake Wood became CORAL program manager for Intel. His job is much the same: get in the middle of super-smart people and provide a framework for them to solve big, complex problems.

Wood is a 20-year Intel veteran who grew up a town or two over from Intel’s Jones Farm campus west of Portland, Oregon. He headed to Chicago for college, earning BS degrees in Industrial Engineering and Manufacturing Engineering from Northwestern University. But Wood was eager to get back to the camping and fishing opportunities of the Northwest. Intel was staffing up its Fab 5 fabrication facility in Aloha, Oregon, and Wood signed on. His first position was night shift operations manager, helping to deliver first-generation Intel Pentium processors.

After advancing through a variety of manufacturing engineering positions, Wood took advantage of an opportunity that he says ended up transforming his professional life. In 2005, Intel sent him and his family to MIT for two years to participate in MIT’s Leaders for Manufacturing Program, now called the Leaders for Global Operations. Wood came away with a Master’s in Civil Engineering, an MBA from MIT’s Sloan School of Management, and a vastly expanded set of skills and insights.

“MIT gave me more context and insight around the business side of manufacturing—more business acumen and critical thinking in the manufacturing space,” Wood recalls. When he returned to Oregon, he moved into manufacturing management and leadership positions at Intel’s D1D facility, overseeing the work of hundreds of technicians and their managers, and ensuring their work kept the factories operating on Intel’s precision cadence.

A Framework for Brilliant People to Solve Problems

The CORAL position came at a time when Wood was looking to stretch in a new direction, and Intel was looking for someone with a unique skillset to drive the execution of the Aurora program plan. “Intel knew this program needed a different skillset to go drive a physical deployment, handle system integration, and take on all the other aspects of being the prime contractor,” Wood says. “It was a match, and I Jumped in with both feet.”

Wood thought he was making a 180-degree turn from his leadership roles in manufacturing management. In fact, although he’s on the other end of the manufacturing pipeline now, his current position is remarkably similar at its core to his previous ones.

“My job is still to get in the middle of the best and brightest technical people in the world in their fields, and help them solve very complex, interrelated problems,” he says. “I’m not there to be smarter than them or to solve their technical issues, but to provide context, give them a framework to more easily solve their problems, and help them drive into the space where we all need to be to meet our objectives. Take away the brilliant person with a PhD in some aspect of materials engineering and swap in the brilliant person with a PhD in some aspect of high performance computing, and it’s very, very similar.”

And, he adds, “I’m absolutely loving it.”

Checkpoint: Theta and Beyond

When we spoke with Wood in October, he said Aurora is on track for first-rack delivery in Q4 2018, and the CORAL teams at DOE, Intel, and Cray are celebrating the on-time installation and acceptance of the Theta supercomputer. Theta is based on the Cray XC40 platform with Intel Xeon Phi processors, previously codenamed Knights Landing.

Theta is one of the key scientific platforms for the CORAL program and serves as an important early Aurora production system for the ALCF. At 8.5 petaflops, the system is a bridge between the Mira and Aurora systems, and an advancement of Cray’s leadership in adaptive supercomputing. “Theta represents a huge success,” Wood says. “It’s a small system relative to Aurora, but it you look at it on its own, it’s very much a major supercomputer. It’s a significant platform for DOE science.”

The Theta installation went very smoothly, according to Susan Coghlan, deputy division director of ALCF. “Argonne drove an aggressive timeline to have the system installed and accepted, and we all had to work as a very tight team to make it happen,” she says. “We all pulled together, and with a lot of planning and preparation, we had the hardware installed in an afternoon. It was unbelievably smooth and insanely fast—one of the best I’ve ever seen. We also learned a lot about how to work together, and that’s going to benefit us on the Aurora install.”

Theta is now supporting ALCF’s Early Science computing and paving the way to Aurora. ALCF put on an four-day workshop for participants in the Theta Early Science Program to get their hands on the system, experience the development and runtime environments, work with ALCF staff to fine-tune their key applications, and assess their scalability. By the workshop’s end, Coghlan reports, all 12 early science teams had their codes up and running on Theta, some at full scale.

Now, the teams are using Theta to address real-world research problems. “Theta is a fabulous stepping stone to Aurora, and Aurora is going to be a really big step toward exascale and the leaps in science that it is going to make possible,” says Coghlan. “It’s exciting.”

­­­­­­­­­­­­­­­­­­­_________________

Watch for part 2 of our Aurora series, which explores some of Aurora’s technology challenges and how Intel is stepping up its game to meet them. Subsequent articles will drill down on the close collaboration among Intel, Cray, and Argonne to create Aurora, and the system’s likely impacts.

About the Author

Jan Rowell covers technology trends in high-performance computing, life sciences, healthcare, and other fields.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This