Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

By Jan Rowell

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: a leadership-class, 200 petaflops supercomputer to be installed at Argonne National Laboratory in 2018. The new system—part of the Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) initiative—aims to be 20 times more powerful than Argonne’s current Mira system. Power consumption will top out at a peak of 16.5 megawatts, just 3.4 times Mira’s energy level. Among other requirements, Aurora must support mission-critical computing from day one, bolster US competitiveness, and move the industry significantly closer to exascale computing. It needs to deliver breakthrough capabilities for both traditional HPC and data analytic applications. And it must mesh with future product plans for both Intel and Cray, Intel’s key collaborator on the initiative.

This article is the first in a series that goes behind the scenes to explore the making of the forthcoming Aurora supercomputer. We’ll share what we learned in interviews with more than a dozen Intel technologists, plus insights from individuals at Cray and the DOE’s Argonne Leadership Computing Facility (ALCF), where Aurora will reside and where technologists are co-designing the system.

You’ll hear how the three organizations are working together to manage the risks and deliver an optimal solution for DOE science. You’ll get a peek under the hood and a glimpse of the technology highlights. And you’ll see the human side. What draws people to such a high-stakes project? What keeps them awake at night? What do they hope their work will mean for DOE—and for HPC users everywhere?

Opportunities and Risks

Aurora is a landmark supercomputer that represents significant new opportunities for Intel, Cray, DOE, and the industry. Aurora will not only enable a new wave of scientific and technical computing for DOE and its research partners, its innovations, delivered at smaller scales by Intel and Cray, will also help drive HPC’s continued expansion into enterprise data centers around the world. These smaller-scale systems will no doubt spur breakthroughs for researchers and commercial users alike.

With Intel as the prime contractor, Aurora offers a high-visibility showcase for Intel Scalable System Framework (Intel SSF)—a chance to demonstrate the full power of integrating Intel’s latest technology advances within a flexible, unified architecture. Aurora will incorporate the forthcoming Intel Xeon Phi processor, codenamed Knights Hill, deployed on next-generation 10nm process technology. The system’s interconnect will utilize a next-generation Intel Omni-Path fabric implemented in silicon photonics, along with an advanced memory hierarchy. The file system, based on Intel Enterprise Edition for Lustre Software, will provide more than 150 petabytes capacity, with throughput of more than a terabyte per second. Intel HPC Orchestrator will help simplify integration, deployment, and operations.

Aurora also advances Intel’s ability to excel at the systems thinking that’s essential to keeping HPC on its faster-than-Moore’s-Law performance curve. “Aurora is the flagship to show what Intel SSF is capable of,” says Jake Wood, CORAL program manager at Intel Federal. “It’s all about systems-level thinking and unprecedented technology integration.”

ALCF Intel Cray leadership meeting
(left to right) Rick Stevens, Argonne; Susan Coghlan, Argonne; Al Gara, Intel; Mark Seager, Intel; Raj Hazra, Intel; Barry Bolding, Cray; Gary Geissler, Cray; Paul Messina, Argonne; Mike Papka, Argonne (Source: Intel)

But there are a range of risks, as well—from the basic financial responsibilities of the prime contractor, to designing with leading-edge technologies, to managing such a large and complex undertaking. The Aurora design includes next-generation Intel technologies that were only on the drawing boards when the project started. The undertaking involves deep collaboration among DOE, Cray, and Intel, and the breadth of innovations means that Intel is drawing resources from multiple divisions across the company. The CORAL team at Intel bridges enterprise and government, chip design and software solutions, platform engineering and system packaging, and more. The scale of the project presents new challenges for everything from software design to system validation.

And although Intel has been part of numerous government contracts, you have to look back to the vaunted Accelerated Strategic Computing Initiative (ASCI) Red supercomputer—the first teraflops system—to find such a large-scale program where Intel was the prime contractor rather than ingredient supplier.

Meet the Maestro

While Al Gara is the architect of the Aurora supercomputer, Jake Wood is the program manager and project foreman, responsible for ensuring that all the moving parts line up correctly, the juggling pins stay up in the air, and the system comes together as specified. He is also program manager for Intel’s other DOE collaborations, including R&D for exascale computing.

jake-wood-500x
After 18 years in manufacturing operations, Jake Wood became CORAL program manager for Intel. His job is much the same: get in the middle of super-smart people and provide a framework for them to solve big, complex problems.

Wood is a 20-year Intel veteran who grew up a town or two over from Intel’s Jones Farm campus west of Portland, Oregon. He headed to Chicago for college, earning BS degrees in Industrial Engineering and Manufacturing Engineering from Northwestern University. But Wood was eager to get back to the camping and fishing opportunities of the Northwest. Intel was staffing up its Fab 5 fabrication facility in Aloha, Oregon, and Wood signed on. His first position was night shift operations manager, helping to deliver first-generation Intel Pentium processors.

After advancing through a variety of manufacturing engineering positions, Wood took advantage of an opportunity that he says ended up transforming his professional life. In 2005, Intel sent him and his family to MIT for two years to participate in MIT’s Leaders for Manufacturing Program, now called the Leaders for Global Operations. Wood came away with a Master’s in Civil Engineering, an MBA from MIT’s Sloan School of Management, and a vastly expanded set of skills and insights.

“MIT gave me more context and insight around the business side of manufacturing—more business acumen and critical thinking in the manufacturing space,” Wood recalls. When he returned to Oregon, he moved into manufacturing management and leadership positions at Intel’s D1D facility, overseeing the work of hundreds of technicians and their managers, and ensuring their work kept the factories operating on Intel’s precision cadence.

A Framework for Brilliant People to Solve Problems

The CORAL position came at a time when Wood was looking to stretch in a new direction, and Intel was looking for someone with a unique skillset to drive the execution of the Aurora program plan. “Intel knew this program needed a different skillset to go drive a physical deployment, handle system integration, and take on all the other aspects of being the prime contractor,” Wood says. “It was a match, and I Jumped in with both feet.”

Wood thought he was making a 180-degree turn from his leadership roles in manufacturing management. In fact, although he’s on the other end of the manufacturing pipeline now, his current position is remarkably similar at its core to his previous ones.

“My job is still to get in the middle of the best and brightest technical people in the world in their fields, and help them solve very complex, interrelated problems,” he says. “I’m not there to be smarter than them or to solve their technical issues, but to provide context, give them a framework to more easily solve their problems, and help them drive into the space where we all need to be to meet our objectives. Take away the brilliant person with a PhD in some aspect of materials engineering and swap in the brilliant person with a PhD in some aspect of high performance computing, and it’s very, very similar.”

And, he adds, “I’m absolutely loving it.”

Checkpoint: Theta and Beyond

When we spoke with Wood in October, he said Aurora is on track for first-rack delivery in Q4 2018, and the CORAL teams at DOE, Intel, and Cray are celebrating the on-time installation and acceptance of the Theta supercomputer. Theta is based on the Cray XC40 platform with Intel Xeon Phi processors, previously codenamed Knights Landing.

Theta is one of the key scientific platforms for the CORAL program and serves as an important early Aurora production system for the ALCF. At 8.5 petaflops, the system is a bridge between the Mira and Aurora systems, and an advancement of Cray’s leadership in adaptive supercomputing. “Theta represents a huge success,” Wood says. “It’s a small system relative to Aurora, but it you look at it on its own, it’s very much a major supercomputer. It’s a significant platform for DOE science.”

The Theta installation went very smoothly, according to Susan Coghlan, deputy division director of ALCF. “Argonne drove an aggressive timeline to have the system installed and accepted, and we all had to work as a very tight team to make it happen,” she says. “We all pulled together, and with a lot of planning and preparation, we had the hardware installed in an afternoon. It was unbelievably smooth and insanely fast—one of the best I’ve ever seen. We also learned a lot about how to work together, and that’s going to benefit us on the Aurora install.”

Theta is now supporting ALCF’s Early Science computing and paving the way to Aurora. ALCF put on an four-day workshop for participants in the Theta Early Science Program to get their hands on the system, experience the development and runtime environments, work with ALCF staff to fine-tune their key applications, and assess their scalability. By the workshop’s end, Coghlan reports, all 12 early science teams had their codes up and running on Theta, some at full scale.

Now, the teams are using Theta to address real-world research problems. “Theta is a fabulous stepping stone to Aurora, and Aurora is going to be a really big step toward exascale and the leaps in science that it is going to make possible,” says Coghlan. “It’s exciting.”

­­­­­­­­­­­­­­­­­­­_________________

Watch for part 2 of our Aurora series, which explores some of Aurora’s technology challenges and how Intel is stepping up its game to meet them. Subsequent articles will drill down on the close collaboration among Intel, Cray, and Argonne to create Aurora, and the system’s likely impacts.

About the Author

Jan Rowell covers technology trends in high-performance computing, life sciences, healthcare, and other fields.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This