Enlisting Deep Learning in the War on Cancer

By John Russell

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines.

By any standard, the U.S. War on Cancer and the Precision Medicine Initiative’s (PMI) are ambitious. Past Wars on Cancer haven’t necessarily fared well, which is not to say much hasn’t been accomplished. Today’s timing seems more promising. Progress in biomedical science and the ramp-up of next gen leadership computers (en route to exascale) are powerful enablers. Stir in the rapid emergence of deep learning to exploit data-driven science and many see greater cause for optimism. Not by chance was the opening plenary panel at SC16 on precision medicine and the role of HPC.

The three JDACS4C pilots span molecular to population scale efforts in support of the CANcer Distributed Learning Environment (CANDLE) project: they are intended to “provide insight into scalable machine learning tools; deep learning, simulation and analytics to reduce time to solution; and inform design of future computing solutions.” The hope is also to establish “a new paradigm for cancer research for years to come by making effective use of the ever-growing volumes and diversity of cancer-related data to build predictive models, provide better understanding of the disease and, ultimately, provide guidance and support decisions on anticipated outcomes of treatment for individual patients.”

Rick Stevens, ANL

These are ambitious goals. Sorting out JDACS4C’s precise lineage is a little challenging – it falls broadly under the Precision Medicine Initiative, NCI Cancer Moonshot, and has been also lumped under NSCI. Stevens noted the early discussion to create the effort started a couple of years ago with the first funding issued in the August time frame. Here’s a snapshot of the three pilots:

  • RAS Molecular Project. This project (Molecular Level Pilot for RAS Structure and Dynamics in Cellular Membranes) is intended to develop new computational approaches supporting research already being done under the RAS Initiative. Ultimately the hope is to refine our understanding of the role of the RAS (gene family) and its associated signaling pathway in cancer and to identify new therapeutic targets uniquely present in RAS protein membrane signaling complexes.
  • Pre-Clinical Screening. This project (Cellular Level Pilot for Predictive Modeling for Pre-clinical Screening) will develop “machine learning, large-scale data and predictive models based on experimental biological data derived from patient-derived xenografts.” The idea is to create a feedback loop, where the experimental models inform the design of the computational models. These predictive models may point to new targets in cancer and help identify new treatments.

Not surprisingly, there are many organizational pieces required. NCI components include the Center for Biomedical Informatics and Information Technology (CBIIT), the Division of Cancer Treatment and Diagnosis (DCTD), the Division of Cancer Control and Population Science (DCCPS), and the Frederick National Laboratory for Cancer Research. There are also four DOE National Laboratories formally designated on the project – Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory.

As the projects came together, “We realized each had a need for deep learning and different uses of it. So the idea is that we would all work together on building both the software environment and network topologies and everything we would need for the three projects so we wouldn’t have duplication,” said Stevens. The researchers defined key benchmarks that “are tractable kinds of deep learning problems that are aligned with what we have to solve for the different cancer sub problems.”

An early first step was attracting vendor participation – something that turned out to be easy said Stevens because virtually all the major HPC vendors are aggressively ramping up DL roadmaps. Most see the JDACS4C pilots as opportunities to learn and refine. Stevens said JDASC4C has collaborations with Intel, Cray, NVIDIA, IBM, among others.

“All of the labs have DGX-1s and NVIDIA has optimized most of the common frameworks for the different GPUs, Pascal, etc. The DGX-1 is like an appliance so anything we build that runs on the DGX-1 can be easily distributed. Intel has it own extensive plans and not all is public yet. I can say that we are collaborating with all the right parts of Intel,” said Stevens, an ANL researcher and leader of the pre-clinical screening project.

Indeed Intel has been busy, buying Nervana (a complete platform for DL) and recently rolling out expanded plans. “They are talking about versions of Knights X series that are optimized for machine learning. Knights Mill is the first version of that part of their roadmap,” said Stevens. The chip giant also introduced a DL inference accelerator card at SC16; it’s a field-programmable gate array (FPGA)-based hardware and software solution for neural network acceleration. Stevens suggests Intel, like NVIDIA, is developing an appliance strategy.

“Intel is very much trying to define a strategy that differentiates some level between the platform for training and for inferencing. Most deep learning systems now do inferencing on the ‘quasi’ client side – on smaller platforms than used for training. Intel wants to ensure “future IA architectures are good at inferencing,” he said.

Not surprisingly  there’s a fair amount of effort assessing the many DL frameworks coming out of the Google, Microsoft, Facebook et al. “We are evaluating which frameworks work best for our problems and we are working with vendors to optimize them on the hardware. We’re also working with Livermore which has an internal project to build a scalable artificial neural network framework call LBANN,” said Stevens.

The plan is to develop “our models in a way that is independent of the frameworks so we can swap out the frameworks as those evolve without having to recode our models. This is a very common approach with deep learning where you have a scripting layer that captures your model representation – the meta algorithms for training and management data, etc. – and we are working with both the academic community and the NVIDIA on the workflow engine at the top. So we have kind of a stacked architecture and it involves collaborating with all of the different groups around the DL landscape.”

“What’s interesting,” said Stevens, “is the vendors for the next-gen platforms are strongly embracing the architectural ideas and features needed for accelerated machine learning in addition to traditional kind of physics-driven simulation.” He noted that market pressures and the fast growth of DL compared to the traditional HPC are pushing them in this direction. “It’s also giving us insight into DOE applications that are going to start looking like this – where there will be traditional physics-driven simulation, but where often we can find a way to leverage machine learning [too].”

Sharing the learning is an important component of the pilot projects. “We are abstracting model problems for the machine learning community to work on that are kind of sanitized versions of the seven candle benchmarks we’re working on,” said Stevens. That will include distributable data, code, all to be available at GitHub. The first of those elements are expected in Q2.

Individual pilot teams are also mounting their own outreach activities with the academic community. In terms of compute power for the pilots, “We are targeting platforms, particularly the CORAL platforms, new machines at Argonne, Oak Ridge and Livermore, and [eventually] exascale. Everything is sort of ecumenical so its not GPU specific or manycore specific.”

It’s interesting to look at the different ways in which the three projects plan to use deep learning.

The RAS project, at the molecular scale, is the smallest dimensional scale of all of the projects. RAS, you may know, is a well-known family of oncogenes that code for signaling proteins embedded in the cell membrane. These proteins control signaling pathways that extend into the cell and drive very many diverse cellular processes. RAS is currently implicated in about 30 percent of cancers including some of the toughest such as pancreatic cancer. The pilot project will combine simulation and wet lab screening data in an effort to elaborate the details of the RAS-related signaling cascades and hopefully identify key places to intervene and new drugs to use.

Even a relatively small tumor may have “thousands of mutations, both driver mutations and many passenger mutations,” said Stevens. These genetic miscues can alter the important details of signaling networks. For many years RAS itself as well as its associated signaling networks have been drug targets but as Stevens pointed out, “the behavior of that signaling network is very non-intuitive. Sometimes if you hit one of the downstream components, it actually creates negative feedback, which actually increases the effect you are trying to inhibit.”

In the RAS project, the simulation is basically a molecular dynamics exercise conducted at various granularities extending all the way down to atomistic behavior including quantum effects. The computational power required, not surprisingly, depends on the level of granularity being simulated and can be substantial.

“Machine learning is being used to track the state space that the simulation is going through and to make decisions – do we zoom in here, do we zoom out, do we change the parameters that we are looking in a different part to the ensemble space. It’s basically acting like a smart supervisor of this simulation to more effectively use it.

“In some sense it’s like the network is watching a movie and saying, “OK, I’ve seen this part of the movie before, let’s fast forward, or wow this is really interesting I’ve never seen this before, let’s use slow motion and zoom in.” That’s sort of what the machine learning is doing in the simulation. It’s able to fast forward and skip around in some sense,” said Stevens.

The pre-clinical screening project, led by Stevens, is an ambitious effort to sift through basically as much cancer  preclinical and clinical data as it can lay hold of and combine that with new data generated from mouse models to build predictive models of drug-tumor interactions. It’s an in silico and experimental feedback approach. Ultimately, given a specific tumor whose molecular attributes (gene expression, SNPs, proteomics, etc) have been characterized, it should be possible to plug that data into a model to determine the best therapeutic regime.

The subtlety here, said Stevens, is there has been a lot of machine learning work in this done at kind of the small scale, that is on single classes of tumors or relatively small classes of drugs. “What we are trying to do with the deep learning is to integrate all of this information across thousands of cell lines, tens of thousands of compounds that have been screened against smaller number of cell lines, and then be able to project that into a mouse. You grow a colony of mice derived from that human tumor, and these mice become proxies for human clinical trials. So I can try different compounds on the colony of tumor mice to provide information about how my tumor might respond to them if given as a drug.”

A huge challenge is being able to make sense of all the historical data, much of which is unstructured and often subjective (e.g. pathology reports). “One of the first things that we have done is to build classifiers to tell us what type the tumor is or where the body site is [based on diverse data],” he said. Not infrequently the data may be suspect. “If it’s a new dataset we run it through our classifiers and they may say, really, this is not from the liver, it’s from some other place.”

As a rule, the preclinical data is outcome based; it doesn’t explain how the result was achieved.

“Right now we can build machine learning models that are pretty accurate at say predicting a drug response or tumor type or outcome but they can’t tell us very effectively why. They are not explanatory, not mechanistic,” said Stevens, “What we want to do is bring in mechanistic models or mechanistic data in some way and hybridize that with machine learning models so that we get two things. We get the ability to have a highly accurate predictable model but also a model that can explain why that prediction. So the idea of this hybrid approach is a wide open space and we think that this will generalize into many fields.” Obtaining large and high quality data for training models remains challenging, he said.

The third project strives to develop models able to make population scale forecasts, what Stevens call “patient trajectories.” It’s basically mining surveillance data across the country. Although somewhat dispersed, there is a great deal of patient data held by NCI, NIH, FDA, pharma, and payor organizations (pathology reports, treatments, outcomes, lifestyle, demographics, etc.). Unfortunately, like a lot of biomedical data, it’s largely unstructured. “We can’t really compute on it in the way we want to so we are using machine learning to translate the unstructured data into structured data we can compute on,” said Stevens

“So for example we want to read all the pathology reports with a machine and pull out, say the biomarkers, the mutational state, or the drugs and so on such that we can then build profiles that are consistent. Think of it as a population-based model. In preclinical screening pilot let’s say we uncover some treatments and strategies that are very effective on a certain type of cancer. We want to take that information and feed it into the population model and say “If this became a common therapy, how much would it change the statistics globally or nationally” or something like that.”

It’s also a way to link all of the pilots, said Steven. Insight from the RAS project might be later used to look at subclasses of cancers where the new treatment might work; that in turn put it into the population model to understand what the impact of that might be.

It’s still early days for the JDACS4C pilot projects, but hopes are high. Stevens noted both NCI and DOE are getting access to things they don’t readily have. “NCI does not have a lot of mathematicians and computer scientists, which DOE has. They also don’t have access to leadership machines. What we (DOE) are getting is access to all of this great experimental data, experimental facilities, public databases.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Officials, scientists and other stakeholders celebrated the new sy Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Indiana University Researchers Use Supercomputing to Model the State’s Largest Watershed

February 20, 2020

With water stressors on the rise, understanding and protecting water supplies is more important than ever. Now, a team of researchers from Indiana University has created a new climate change data portal to help Indianans Read more…

By Staff report

TACC – Supporting Portable, Reproducible, Computational Science with Containers

February 20, 2020

Researchers who use supercomputers for science typically don't limit themselves to one system. They move their projects to whatever resources are available, often using many different systems simultaneously, in their lab Read more…

By Aaron Dubrow

China Researchers Set Distance Record in Quantum Memory Entanglement

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote q Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

New Algorithm Allows PCs to Challenge HPC in Weather Forecasting

February 19, 2020

Accurate weather forecasting has, by and large, been situated squarely in the domain of high-performance computing – just this week, the UK announced a nearly $1.6 billion investment in the world’s largest supercompu Read more…

By Oliver Peckham

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This