Enlisting Deep Learning in the War on Cancer

By John Russell

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines.

By any standard, the U.S. War on Cancer and the Precision Medicine Initiative’s (PMI) are ambitious. Past Wars on Cancer haven’t necessarily fared well, which is not to say much hasn’t been accomplished. Today’s timing seems more promising. Progress in biomedical science and the ramp-up of next gen leadership computers (en route to exascale) are powerful enablers. Stir in the rapid emergence of deep learning to exploit data-driven science and many see greater cause for optimism. Not by chance was the opening plenary panel at SC16 on precision medicine and the role of HPC.

The three JDACS4C pilots span molecular to population scale efforts in support of the CANcer Distributed Learning Environment (CANDLE) project: they are intended to “provide insight into scalable machine learning tools; deep learning, simulation and analytics to reduce time to solution; and inform design of future computing solutions.” The hope is also to establish “a new paradigm for cancer research for years to come by making effective use of the ever-growing volumes and diversity of cancer-related data to build predictive models, provide better understanding of the disease and, ultimately, provide guidance and support decisions on anticipated outcomes of treatment for individual patients.”

Rick Stevens, ANL

These are ambitious goals. Sorting out JDACS4C’s precise lineage is a little challenging – it falls broadly under the Precision Medicine Initiative, NCI Cancer Moonshot, and has been also lumped under NSCI. Stevens noted the early discussion to create the effort started a couple of years ago with the first funding issued in the August time frame. Here’s a snapshot of the three pilots:

  • RAS Molecular Project. This project (Molecular Level Pilot for RAS Structure and Dynamics in Cellular Membranes) is intended to develop new computational approaches supporting research already being done under the RAS Initiative. Ultimately the hope is to refine our understanding of the role of the RAS (gene family) and its associated signaling pathway in cancer and to identify new therapeutic targets uniquely present in RAS protein membrane signaling complexes.
  • Pre-Clinical Screening. This project (Cellular Level Pilot for Predictive Modeling for Pre-clinical Screening) will develop “machine learning, large-scale data and predictive models based on experimental biological data derived from patient-derived xenografts.” The idea is to create a feedback loop, where the experimental models inform the design of the computational models. These predictive models may point to new targets in cancer and help identify new treatments.

Not surprisingly, there are many organizational pieces required. NCI components include the Center for Biomedical Informatics and Information Technology (CBIIT), the Division of Cancer Treatment and Diagnosis (DCTD), the Division of Cancer Control and Population Science (DCCPS), and the Frederick National Laboratory for Cancer Research. There are also four DOE National Laboratories formally designated on the project – Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory.

As the projects came together, “We realized each had a need for deep learning and different uses of it. So the idea is that we would all work together on building both the software environment and network topologies and everything we would need for the three projects so we wouldn’t have duplication,” said Stevens. The researchers defined key benchmarks that “are tractable kinds of deep learning problems that are aligned with what we have to solve for the different cancer sub problems.”

An early first step was attracting vendor participation – something that turned out to be easy said Stevens because virtually all the major HPC vendors are aggressively ramping up DL roadmaps. Most see the JDACS4C pilots as opportunities to learn and refine. Stevens said JDASC4C has collaborations with Intel, Cray, NVIDIA, IBM, among others.

“All of the labs have DGX-1s and NVIDIA has optimized most of the common frameworks for the different GPUs, Pascal, etc. The DGX-1 is like an appliance so anything we build that runs on the DGX-1 can be easily distributed. Intel has it own extensive plans and not all is public yet. I can say that we are collaborating with all the right parts of Intel,” said Stevens, an ANL researcher and leader of the pre-clinical screening project.

Indeed Intel has been busy, buying Nervana (a complete platform for DL) and recently rolling out expanded plans. “They are talking about versions of Knights X series that are optimized for machine learning. Knights Mill is the first version of that part of their roadmap,” said Stevens. The chip giant also introduced a DL inference accelerator card at SC16; it’s a field-programmable gate array (FPGA)-based hardware and software solution for neural network acceleration. Stevens suggests Intel, like NVIDIA, is developing an appliance strategy.

“Intel is very much trying to define a strategy that differentiates some level between the platform for training and for inferencing. Most deep learning systems now do inferencing on the ‘quasi’ client side – on smaller platforms than used for training. Intel wants to ensure “future IA architectures are good at inferencing,” he said.

Not surprisingly  there’s a fair amount of effort assessing the many DL frameworks coming out of the Google, Microsoft, Facebook et al. “We are evaluating which frameworks work best for our problems and we are working with vendors to optimize them on the hardware. We’re also working with Livermore which has an internal project to build a scalable artificial neural network framework call LBANN,” said Stevens.

The plan is to develop “our models in a way that is independent of the frameworks so we can swap out the frameworks as those evolve without having to recode our models. This is a very common approach with deep learning where you have a scripting layer that captures your model representation – the meta algorithms for training and management data, etc. – and we are working with both the academic community and the NVIDIA on the workflow engine at the top. So we have kind of a stacked architecture and it involves collaborating with all of the different groups around the DL landscape.”

“What’s interesting,” said Stevens, “is the vendors for the next-gen platforms are strongly embracing the architectural ideas and features needed for accelerated machine learning in addition to traditional kind of physics-driven simulation.” He noted that market pressures and the fast growth of DL compared to the traditional HPC are pushing them in this direction. “It’s also giving us insight into DOE applications that are going to start looking like this – where there will be traditional physics-driven simulation, but where often we can find a way to leverage machine learning [too].”

Sharing the learning is an important component of the pilot projects. “We are abstracting model problems for the machine learning community to work on that are kind of sanitized versions of the seven candle benchmarks we’re working on,” said Stevens. That will include distributable data, code, all to be available at GitHub. The first of those elements are expected in Q2.

Individual pilot teams are also mounting their own outreach activities with the academic community. In terms of compute power for the pilots, “We are targeting platforms, particularly the CORAL platforms, new machines at Argonne, Oak Ridge and Livermore, and [eventually] exascale. Everything is sort of ecumenical so its not GPU specific or manycore specific.”

It’s interesting to look at the different ways in which the three projects plan to use deep learning.

The RAS project, at the molecular scale, is the smallest dimensional scale of all of the projects. RAS, you may know, is a well-known family of oncogenes that code for signaling proteins embedded in the cell membrane. These proteins control signaling pathways that extend into the cell and drive very many diverse cellular processes. RAS is currently implicated in about 30 percent of cancers including some of the toughest such as pancreatic cancer. The pilot project will combine simulation and wet lab screening data in an effort to elaborate the details of the RAS-related signaling cascades and hopefully identify key places to intervene and new drugs to use.

Even a relatively small tumor may have “thousands of mutations, both driver mutations and many passenger mutations,” said Stevens. These genetic miscues can alter the important details of signaling networks. For many years RAS itself as well as its associated signaling networks have been drug targets but as Stevens pointed out, “the behavior of that signaling network is very non-intuitive. Sometimes if you hit one of the downstream components, it actually creates negative feedback, which actually increases the effect you are trying to inhibit.”

In the RAS project, the simulation is basically a molecular dynamics exercise conducted at various granularities extending all the way down to atomistic behavior including quantum effects. The computational power required, not surprisingly, depends on the level of granularity being simulated and can be substantial.

“Machine learning is being used to track the state space that the simulation is going through and to make decisions – do we zoom in here, do we zoom out, do we change the parameters that we are looking in a different part to the ensemble space. It’s basically acting like a smart supervisor of this simulation to more effectively use it.

“In some sense it’s like the network is watching a movie and saying, “OK, I’ve seen this part of the movie before, let’s fast forward, or wow this is really interesting I’ve never seen this before, let’s use slow motion and zoom in.” That’s sort of what the machine learning is doing in the simulation. It’s able to fast forward and skip around in some sense,” said Stevens.

The pre-clinical screening project, led by Stevens, is an ambitious effort to sift through basically as much cancer  preclinical and clinical data as it can lay hold of and combine that with new data generated from mouse models to build predictive models of drug-tumor interactions. It’s an in silico and experimental feedback approach. Ultimately, given a specific tumor whose molecular attributes (gene expression, SNPs, proteomics, etc) have been characterized, it should be possible to plug that data into a model to determine the best therapeutic regime.

The subtlety here, said Stevens, is there has been a lot of machine learning work in this done at kind of the small scale, that is on single classes of tumors or relatively small classes of drugs. “What we are trying to do with the deep learning is to integrate all of this information across thousands of cell lines, tens of thousands of compounds that have been screened against smaller number of cell lines, and then be able to project that into a mouse. You grow a colony of mice derived from that human tumor, and these mice become proxies for human clinical trials. So I can try different compounds on the colony of tumor mice to provide information about how my tumor might respond to them if given as a drug.”

A huge challenge is being able to make sense of all the historical data, much of which is unstructured and often subjective (e.g. pathology reports). “One of the first things that we have done is to build classifiers to tell us what type the tumor is or where the body site is [based on diverse data],” he said. Not infrequently the data may be suspect. “If it’s a new dataset we run it through our classifiers and they may say, really, this is not from the liver, it’s from some other place.”

As a rule, the preclinical data is outcome based; it doesn’t explain how the result was achieved.

“Right now we can build machine learning models that are pretty accurate at say predicting a drug response or tumor type or outcome but they can’t tell us very effectively why. They are not explanatory, not mechanistic,” said Stevens, “What we want to do is bring in mechanistic models or mechanistic data in some way and hybridize that with machine learning models so that we get two things. We get the ability to have a highly accurate predictable model but also a model that can explain why that prediction. So the idea of this hybrid approach is a wide open space and we think that this will generalize into many fields.” Obtaining large and high quality data for training models remains challenging, he said.

The third project strives to develop models able to make population scale forecasts, what Stevens call “patient trajectories.” It’s basically mining surveillance data across the country. Although somewhat dispersed, there is a great deal of patient data held by NCI, NIH, FDA, pharma, and payor organizations (pathology reports, treatments, outcomes, lifestyle, demographics, etc.). Unfortunately, like a lot of biomedical data, it’s largely unstructured. “We can’t really compute on it in the way we want to so we are using machine learning to translate the unstructured data into structured data we can compute on,” said Stevens

“So for example we want to read all the pathology reports with a machine and pull out, say the biomarkers, the mutational state, or the drugs and so on such that we can then build profiles that are consistent. Think of it as a population-based model. In preclinical screening pilot let’s say we uncover some treatments and strategies that are very effective on a certain type of cancer. We want to take that information and feed it into the population model and say “If this became a common therapy, how much would it change the statistics globally or nationally” or something like that.”

It’s also a way to link all of the pilots, said Steven. Insight from the RAS project might be later used to look at subclasses of cancers where the new treatment might work; that in turn put it into the population model to understand what the impact of that might be.

It’s still early days for the JDACS4C pilot projects, but hopes are high. Stevens noted both NCI and DOE are getting access to things they don’t readily have. “NCI does not have a lot of mathematicians and computer scientists, which DOE has. They also don’t have access to leadership machines. What we (DOE) are getting is access to all of this great experimental data, experimental facilities, public databases.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This