US Exascale Computing Update with Paul Messina

By Tiffany Trader

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers. Earlier this year, the United States announced its goal to stand up two capable exascale machines by 2023 as part of the Exascale Computing Project and Distinguished Argonne Fellow Dr. Paul Messina is leading the charge.

Since the project launched last February ECP has awarded $122 million in funding with $39.8 million going toward 22 application development projects, $34 million for 35 software development proposals and $48 million for four co-design centers. At SC16, we spoke with Dr. Messina about the mission of the project, the progress made so far — including a review of these three funding rounds — and the possibility of an accelerated timeline.

Here are highlights from that discussion (the full interview is included at the end of the article).

Why exascale matters

“In the history of computing as one gets the ability to do more calculations or deal with more data, we are able to tackle problems we couldn’t deal with otherwise. A lot of the problems that over the years we first could simulate and validate with an experiment in one-dimension, we’re now able to do it in two or three-dimensions. With exascale, we expect to be able to do things in much greater scale and with more fidelity. In some cases we hope to be able to do predictive simulations, not just to verify that something works the way we thought it would. An example of that would be discovering new materials that are better for batteries, for energy storage.

“Exascale is an arbitrary stepping stone along the way that will continue. Just as we had gigaflops and teraflops, peta- and so on, exascale is one along the way. But when you have an increase in compute power by a factor of one-hundred, chances are you will be able to tackle things that you cannot tackle now. Even at this conference you will hear about certain problems that exascale isn’t good enough for, so that indicates that it’s a stepping stone along the way. But we have identified dozens of applications that are important, problems that can’t be solved today and that we believe with exascale capability we will be able to solve. Precision medicine is one, additive manufacturing for very complex materials is another, climate science and carbon capture simulation, for example, are among the applications we are investing in.”

On the significance of ECP being a project as opposed to a program

“There have been research efforts and investigations into exascale since 2007, nine years ago. At the point that it became a project, it indicates that we really want to get going on it. The reason it is a project is that there are so many things that have to be done simultaneously and in concert with each other. The general outline of the project is that we invest in applications, we invest in the software stack, we invest in hardware technology with the vendor community — the people who develop the technologies so that those technologies will eventually land in products that will be in exascale systems and that will be better suited to our applications — and we also invest in the facilities from their knowledge of what works when they install systems. Those four big pieces have to work together and this is a holistic approach.

“The project will have milestones, some of which are shared between the applications and the software so if application A says ‘I need a programming language feature to express this kind of calculation more easily,’ then we want the compiler and  programming models part of the software to try to address that but then they have to address it together — if it doesn’t work, try again. That’s why it’s a project, because we have to orchestrate the various pieces. It can’t be just invent a nice programming model, tackle a very exciting application. We have to work together to be successful at exascale; same thing goes with the hardware architecture, the node technology and the system technology.”

The mission of ECP

“The mission is to create an exascale ecosystem so that towards the end of the project there will be companies that will be able to bid exascale systems in response to an RFP by the facilities, not the project, but the typical DOE facilities at Livermore, Argonne, Berkeley, Oak Ridge and Los Alamos. There will be a software stack that we hope will not only meet the needs of the exascale applications, but will also be a good HPC software stack because one of our goals is also to help industry and the medium-sized HPC users more easily get into HPC. If the software stack is compatible at the middle end as well as the very highest end, it gives them an on-ramp. And a major goal is the applications we are funding to be ready on day one to use the systems when they are installed. These systems have a lifetime of four to five years. If it takes two years for the applications to get ready to use them productively, half the life of the system has gone by before they can start cranking out results, so part of the ecosystem is a large cadre of application teams that know how to use exascale, they’ve implemented exciting applications, and that will help spread the knowledge and expertise.”

The global exascale race

“The fact that these countries and world regions like the EU have announced major investments in exascale development is an indication that exascale matters. Those countries would not be investing heavily in exascale development if they didn’t think it was useful. The US currently has a goal to develop exascale capability with systems installed and accepted in a time range of seven to ten years. It is a range, and certainly the government is considering an acceleration of that — it might be six to seven years. Any acceleration comes at a price. This project is investing very heavily in applications and software, not just on buying the system from vendors — so it’s a big investment but one that I think is necessary to be able to get the benefits of exascale, to have the applications ready to use and exploit the systems.

“Could we be doing better? If this project had started two-three years ago we would be farther ahead, but that didn’t happen. We got going about a year ago — it isn’t clear that we would be the first country that has an exaflop system. But remember I haven’t used the word exaflop until now. I’ve talked about exascale. What we’re focusing on is having applications and a software stack that runs effectively in a ratio that would indicate that it’s exascale. It might take two exaflops, so who gets an exaflop first might not be as important as who gets the equivalent of exascale. We also have goals around energy usage, 20-30 MW, which is a lot but if we didn’t have a goal like that we might end up with 60 or 100 MW, which is very expensive.

“If we are asked as a project to accelerate, we will do our best to accelerate — it will require more money and more risk, but within reason we will certainly do that.”

Sustainable exascale

“I often emphasize that for the technologies that we’re hoping the vendors will develop partly with our funding and the software stack that we’re developing in collaboration with universities and industry that that will create a sustainable ecosystem. It will not just be that we’ve gotten to exascale, systems can be anointed as exascale, we breath a sigh of relief and relax. It needs to be sustainable and that’s why we really want systems that are in the vendor’s product line — they’re not something they are building just for us one of a kind. It needs to be part of the business model that they want to follow, and software that is usable by many different applications, which will make it sustainable — open source almost exclusively, which again helps sustainability because many people can then contribute to it and help evolve it beyond exascale.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This