US Exascale Computing Update with Paul Messina

By Tiffany Trader

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers. Earlier this year, the United States announced its goal to stand up two capable exascale machines by 2023 as part of the Exascale Computing Project and Distinguished Argonne Fellow Dr. Paul Messina is leading the charge.

Since the project launched last February ECP has awarded $122 million in funding with $39.8 million going toward 22 application development projects, $34 million for 35 software development proposals and $48 million for four co-design centers. At SC16, we spoke with Dr. Messina about the mission of the project, the progress made so far — including a review of these three funding rounds — and the possibility of an accelerated timeline.

Here are highlights from that discussion (the full interview is included at the end of the article).

Why exascale matters

“In the history of computing as one gets the ability to do more calculations or deal with more data, we are able to tackle problems we couldn’t deal with otherwise. A lot of the problems that over the years we first could simulate and validate with an experiment in one-dimension, we’re now able to do it in two or three-dimensions. With exascale, we expect to be able to do things in much greater scale and with more fidelity. In some cases we hope to be able to do predictive simulations, not just to verify that something works the way we thought it would. An example of that would be discovering new materials that are better for batteries, for energy storage.

“Exascale is an arbitrary stepping stone along the way that will continue. Just as we had gigaflops and teraflops, peta- and so on, exascale is one along the way. But when you have an increase in compute power by a factor of one-hundred, chances are you will be able to tackle things that you cannot tackle now. Even at this conference you will hear about certain problems that exascale isn’t good enough for, so that indicates that it’s a stepping stone along the way. But we have identified dozens of applications that are important, problems that can’t be solved today and that we believe with exascale capability we will be able to solve. Precision medicine is one, additive manufacturing for very complex materials is another, climate science and carbon capture simulation, for example, are among the applications we are investing in.”

On the significance of ECP being a project as opposed to a program

“There have been research efforts and investigations into exascale since 2007, nine years ago. At the point that it became a project, it indicates that we really want to get going on it. The reason it is a project is that there are so many things that have to be done simultaneously and in concert with each other. The general outline of the project is that we invest in applications, we invest in the software stack, we invest in hardware technology with the vendor community — the people who develop the technologies so that those technologies will eventually land in products that will be in exascale systems and that will be better suited to our applications — and we also invest in the facilities from their knowledge of what works when they install systems. Those four big pieces have to work together and this is a holistic approach.

“The project will have milestones, some of which are shared between the applications and the software so if application A says ‘I need a programming language feature to express this kind of calculation more easily,’ then we want the compiler and  programming models part of the software to try to address that but then they have to address it together — if it doesn’t work, try again. That’s why it’s a project, because we have to orchestrate the various pieces. It can’t be just invent a nice programming model, tackle a very exciting application. We have to work together to be successful at exascale; same thing goes with the hardware architecture, the node technology and the system technology.”

The mission of ECP

“The mission is to create an exascale ecosystem so that towards the end of the project there will be companies that will be able to bid exascale systems in response to an RFP by the facilities, not the project, but the typical DOE facilities at Livermore, Argonne, Berkeley, Oak Ridge and Los Alamos. There will be a software stack that we hope will not only meet the needs of the exascale applications, but will also be a good HPC software stack because one of our goals is also to help industry and the medium-sized HPC users more easily get into HPC. If the software stack is compatible at the middle end as well as the very highest end, it gives them an on-ramp. And a major goal is the applications we are funding to be ready on day one to use the systems when they are installed. These systems have a lifetime of four to five years. If it takes two years for the applications to get ready to use them productively, half the life of the system has gone by before they can start cranking out results, so part of the ecosystem is a large cadre of application teams that know how to use exascale, they’ve implemented exciting applications, and that will help spread the knowledge and expertise.”

The global exascale race

“The fact that these countries and world regions like the EU have announced major investments in exascale development is an indication that exascale matters. Those countries would not be investing heavily in exascale development if they didn’t think it was useful. The US currently has a goal to develop exascale capability with systems installed and accepted in a time range of seven to ten years. It is a range, and certainly the government is considering an acceleration of that — it might be six to seven years. Any acceleration comes at a price. This project is investing very heavily in applications and software, not just on buying the system from vendors — so it’s a big investment but one that I think is necessary to be able to get the benefits of exascale, to have the applications ready to use and exploit the systems.

“Could we be doing better? If this project had started two-three years ago we would be farther ahead, but that didn’t happen. We got going about a year ago — it isn’t clear that we would be the first country that has an exaflop system. But remember I haven’t used the word exaflop until now. I’ve talked about exascale. What we’re focusing on is having applications and a software stack that runs effectively in a ratio that would indicate that it’s exascale. It might take two exaflops, so who gets an exaflop first might not be as important as who gets the equivalent of exascale. We also have goals around energy usage, 20-30 MW, which is a lot but if we didn’t have a goal like that we might end up with 60 or 100 MW, which is very expensive.

“If we are asked as a project to accelerate, we will do our best to accelerate — it will require more money and more risk, but within reason we will certainly do that.”

Sustainable exascale

“I often emphasize that for the technologies that we’re hoping the vendors will develop partly with our funding and the software stack that we’re developing in collaboration with universities and industry that that will create a sustainable ecosystem. It will not just be that we’ve gotten to exascale, systems can be anointed as exascale, we breath a sigh of relief and relax. It needs to be sustainable and that’s why we really want systems that are in the vendor’s product line — they’re not something they are building just for us one of a kind. It needs to be part of the business model that they want to follow, and software that is usable by many different applications, which will make it sustainable — open source almost exclusively, which again helps sustainability because many people can then contribute to it and help evolve it beyond exascale.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This