US Exascale Computing Update with Paul Messina

By Tiffany Trader

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers. Earlier this year, the United States announced its goal to stand up two capable exascale machines by 2023 as part of the Exascale Computing Project and Distinguished Argonne Fellow Dr. Paul Messina is leading the charge.

Since the project launched last February ECP has awarded $122 million in funding with $39.8 million going toward 22 application development projects, $34 million for 35 software development proposals and $48 million for four co-design centers. At SC16, we spoke with Dr. Messina about the mission of the project, the progress made so far — including a review of these three funding rounds — and the possibility of an accelerated timeline.

Here are highlights from that discussion (the full interview is included at the end of the article).

Why exascale matters

“In the history of computing as one gets the ability to do more calculations or deal with more data, we are able to tackle problems we couldn’t deal with otherwise. A lot of the problems that over the years we first could simulate and validate with an experiment in one-dimension, we’re now able to do it in two or three-dimensions. With exascale, we expect to be able to do things in much greater scale and with more fidelity. In some cases we hope to be able to do predictive simulations, not just to verify that something works the way we thought it would. An example of that would be discovering new materials that are better for batteries, for energy storage.

“Exascale is an arbitrary stepping stone along the way that will continue. Just as we had gigaflops and teraflops, peta- and so on, exascale is one along the way. But when you have an increase in compute power by a factor of one-hundred, chances are you will be able to tackle things that you cannot tackle now. Even at this conference you will hear about certain problems that exascale isn’t good enough for, so that indicates that it’s a stepping stone along the way. But we have identified dozens of applications that are important, problems that can’t be solved today and that we believe with exascale capability we will be able to solve. Precision medicine is one, additive manufacturing for very complex materials is another, climate science and carbon capture simulation, for example, are among the applications we are investing in.”

On the significance of ECP being a project as opposed to a program

“There have been research efforts and investigations into exascale since 2007, nine years ago. At the point that it became a project, it indicates that we really want to get going on it. The reason it is a project is that there are so many things that have to be done simultaneously and in concert with each other. The general outline of the project is that we invest in applications, we invest in the software stack, we invest in hardware technology with the vendor community — the people who develop the technologies so that those technologies will eventually land in products that will be in exascale systems and that will be better suited to our applications — and we also invest in the facilities from their knowledge of what works when they install systems. Those four big pieces have to work together and this is a holistic approach.

“The project will have milestones, some of which are shared between the applications and the software so if application A says ‘I need a programming language feature to express this kind of calculation more easily,’ then we want the compiler and  programming models part of the software to try to address that but then they have to address it together — if it doesn’t work, try again. That’s why it’s a project, because we have to orchestrate the various pieces. It can’t be just invent a nice programming model, tackle a very exciting application. We have to work together to be successful at exascale; same thing goes with the hardware architecture, the node technology and the system technology.”

The mission of ECP

“The mission is to create an exascale ecosystem so that towards the end of the project there will be companies that will be able to bid exascale systems in response to an RFP by the facilities, not the project, but the typical DOE facilities at Livermore, Argonne, Berkeley, Oak Ridge and Los Alamos. There will be a software stack that we hope will not only meet the needs of the exascale applications, but will also be a good HPC software stack because one of our goals is also to help industry and the medium-sized HPC users more easily get into HPC. If the software stack is compatible at the middle end as well as the very highest end, it gives them an on-ramp. And a major goal is the applications we are funding to be ready on day one to use the systems when they are installed. These systems have a lifetime of four to five years. If it takes two years for the applications to get ready to use them productively, half the life of the system has gone by before they can start cranking out results, so part of the ecosystem is a large cadre of application teams that know how to use exascale, they’ve implemented exciting applications, and that will help spread the knowledge and expertise.”

The global exascale race

“The fact that these countries and world regions like the EU have announced major investments in exascale development is an indication that exascale matters. Those countries would not be investing heavily in exascale development if they didn’t think it was useful. The US currently has a goal to develop exascale capability with systems installed and accepted in a time range of seven to ten years. It is a range, and certainly the government is considering an acceleration of that — it might be six to seven years. Any acceleration comes at a price. This project is investing very heavily in applications and software, not just on buying the system from vendors — so it’s a big investment but one that I think is necessary to be able to get the benefits of exascale, to have the applications ready to use and exploit the systems.

“Could we be doing better? If this project had started two-three years ago we would be farther ahead, but that didn’t happen. We got going about a year ago — it isn’t clear that we would be the first country that has an exaflop system. But remember I haven’t used the word exaflop until now. I’ve talked about exascale. What we’re focusing on is having applications and a software stack that runs effectively in a ratio that would indicate that it’s exascale. It might take two exaflops, so who gets an exaflop first might not be as important as who gets the equivalent of exascale. We also have goals around energy usage, 20-30 MW, which is a lot but if we didn’t have a goal like that we might end up with 60 or 100 MW, which is very expensive.

“If we are asked as a project to accelerate, we will do our best to accelerate — it will require more money and more risk, but within reason we will certainly do that.”

Sustainable exascale

“I often emphasize that for the technologies that we’re hoping the vendors will develop partly with our funding and the software stack that we’re developing in collaboration with universities and industry that that will create a sustainable ecosystem. It will not just be that we’ve gotten to exascale, systems can be anointed as exascale, we breath a sigh of relief and relax. It needs to be sustainable and that’s why we really want systems that are in the vendor’s product line — they’re not something they are building just for us one of a kind. It needs to be part of the business model that they want to follow, and software that is usable by many different applications, which will make it sustainable — open source almost exclusively, which again helps sustainability because many people can then contribute to it and help evolve it beyond exascale.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Clemson’s Cautionary Cryptomining Tale

December 11, 2018

In some ways, the bigger the computer, the more vulnerable it is to cryptomining as Clemson University discovered after cryptominers dug into its Palmetto supercomputer. When a number of nodes on Clemson University’s P Read more…

By Staff

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Blurring the Lines Between HPC and AI @ SC18

The dominant topic at SC18 was the convergence of HPC and Artificial Intelligence (AI) with some of the biggest research and enterprise HPC users providing perspectives on how HPC and AI are moving closer together. Read more…

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This