KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

By John Russell

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. It’s nice to have patient capital, a rare commodity for startups these days. The company contends its KNUPATH Hermosa processor with 256 DSP cores and its Lambda fabric will bring performance, scalability, energy, and programmability advantages over CPUs, GPUS, and FPGAs to a wide swath of machine learning applications. The first commercial boards – code named Mavericks – are expected around March this year.

Founded in the 2005 timeframe by Daniel Goldin, the long time NASA administrator, KnuEdge has raised roughly $100M no doubt stemming from investor confidence in Goldin’s extensive technology creation and delivery history. Goldin and company believe their investors’ patience is about to start paying off. KnuEdge has two business units, KNUPATH focused on hardware accelerators based on Hermosa and Lambda technology, and KnuVerse, focused on voice and face recognition systems. The latter, said Steve Cumings, CMO, KnuEdge, has customers in the government sector. Company revenues are somewhat north of $20 million so far.

Broadly, KnuEdge’s view is that a highly scalable processor in a single socket is handicapped in addressing growing machine learning and large-scale computing challenges. In contrast, the company’s Lambda Fabric enables a large number of “KNUPATH Hermosa processors to be interconnected in low latency, high throughput mesh for massively parallel processing which is well suited for application needs that will drive the compute engines of the future.”

This isn’t exactly a new idea. The Hermosa chip and Lambda technology will enter the market amid a gush of machine learning technologies all striving to advance data-driven science and enterprise data analytics. Indeed the emergence of heterogeneous computing architectures relying on a variety of accelerator engines is a key feature of today’s computing landscape. Given Goldin’s remarkable achievements at NASA it should be interesting to watch KnuEdge’s progress.

Early developer boards with two Hermosa chips have been available for some time. Volume sales of individual chips are planned to begin in January followed by the Mavericks offering, a PCIe board with four Hermosa chips, towards the end of the quarter.

Presented as a “neural computing” approach, the KNUPATH architecture actually attempts to mimic nervous system communication more than brain-inspired spiky neuron ‘inference logic’ (discussed further below).

Patrick Patla, senior vice president and general manager of KNUPATH and a former AMD executive, said, “What’s unique about Hermosa’s 256 DSP cores is that they are hooked together at a central part of the processor with a router that has 16 ports. Using the Lambda fabric, it’s possible, at least theoretically, to scale to 500,000 Hermosa processors.

“We are a data flow machine. So you push data through the system and can have the calculation and different algorithms change on the fly. We are different than a GPU accelerator in that they use a SIMD architecture. We use multiple programs, multiple data, so on our 256 cores we could have 256 separate algorithms running. You would push data through those algorithms and then you have hits on the data at different hit rates based on the algorithms and you can tune and resend algorithms to those DSPs through packets,” explained Patla.

“Basically the packets that we send through the Lambda network are what allows the programming of the DSP, so packets deliver the program, the algorithm, and then bring the payload, and push the data through it. Not only are you getting all the data and the operating instructions with each packet, but each core also knows the next destination for that information so it’s extremely efficient.” One result is very low latency at various systems levels (see diagram below).

Patla also contrasted Hermosa’s ease of use with emerging brain-inspired neuromorphic chips such as IBM’s TrueNorth, which uses “spiking neuron” architecture.

“Spiky algorithms are notoriously difficult to program. Commonly they are trained on other networks first and then moved onto the neuromorphic chip so the actual software side of that is different,” he said.

As noted earlier the Hermosa-Lambda architecture emulates neuronal connectivity more than brain processing. “If you look at the different neuron-based approaches, our inspiration really gives you lots of little engines – that’s the background of the DSP cores, what we affectionately sometimes call tDSPs or tiny DSPs,” said Patla. Reliance on familiar DSP architecture eases programming.

“Our tools sit on a C/C++ library set on top of LLVM (compiler). And everybody is familiar with OpenCL as well as OpenMPI which is very comfortable in our architecture,” said Patla. The Hermosa/Lambda architecture also supports NUMA (non uniform memory access) and each processor has memory directly (72MB) on it. “Much of the advantage is the dataflow but also all the advantages of common programming techniques for anybody that has worked on OpenMPI. Many of the other [neuromorphic] architecture require a different set of tools.”

Hermosa Development Board

KnuEdge has had a software developer kit out for “quite some time” and it is already in the hands of many developers, according to Patla.

It all sounds great. In April KnuEdge will hold a Hermosa developers’ conference at UCSD as well as a “heterogeneous neural network conference” in partnership with UCSD for the development of next generation algorithms that can take advantage of new architectures such as Hermosa. Patla said performance benchmarks for chip will be forthcoming with the release of the commercial product; it seems like the developer conference would be a good place to do so, but he wouldn’t specify when beyond the first half of the year.

“Right now, as you would imagine, we are in the labs with our SDKs and final verification of those commercial systems as we are tuning and bringing all of our code to the processors. In the future we’ll show configurations of 4, 8, 12, 16, Hermosas together to show the scalability of the Lambda fabric. When Steve talked about mimicking the nervous systems it really is about our connectivity and the fact that when you add more Hermosas to the network, we continue to scale because with every socket you are adding more memory as well. Each processor has 72MB of onchip memory that is sufficient for the programming of our kinds of algorithms and the workload we are trying to tackle.”

Currently the chip is being fabbed by GLOBALFOUNDARIES on the 32nm process. “It’s a well behaved chip where these 256 cores and fabric and everything lives in a 35-watt part,” said Patla.

The KNUPATH folks believe Hermosa has the potential to meet a wide variety of machine-learning kinds of applications performed in heterogeneous computing environments as well as an opportunity to replace existing approaches to those applications.

‘We have a demo on the website that compares us to the most current NVIDIA card and we have a 2.5x performance. It is very interesting that a video card isn’t very good at video compression that we are good at because of the parallelism of communication we handle across the memory. So that’s one of the spaces we’ll be aiming at. And of course it will also find its way into many of the single board computer spaces because at 35 watts and the ability to do signal processing and such fine grained computing we actually expect it to replace many FPGAs in a lot of environments.”

Patla argues Hermosa/Lambda’s flexibility is a major benefit and door opener – one could divvy the chips up and have a multipurpose SOC instead of dedicating it to just one task. He used a video analysis application as an example of flexibility and reprogrammability.

“You can reprogram a core by just delivering a new packet. For example, if you were doing video analysis and were searching within videos, you could be looking for ball caps. You could have all the different algorithms looking at ball caps and you could just all of a sudden reprogram and divide the chip and have 25 percent of the chip looking for red ball caps and 25 percent looking for blue caps. You could flip to four different algorithms in nanoseconds. Then when you have high hit rates and you realize the one you are really looking for, and you could say OK now all care about our green ball caps and that algorithm would propagate against all the cores and you’d be able to take your throughput up. It’s very fast, very flexible,” he said.

At SC16, the KNUPATH team was busily evangelizing. Patla said they talked to a number of cloud providers as well as national labs that expressed interest to the point that he is expecting some new workloads to emerge.

There’s still much to do. Patla ticked off desirable milestones for 2017 – getting out of the lab, showcasing a couple of commercial customers and workloads, integrating the many machine learning frameworks, making sure Hermosa-based systems get into the cloud somewhere for development and production purposes, to name but a few.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

HPC Perspectives with Dr. Seid Koric

September 12, 2019

Brendan McGinty, director of Industry for the National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign, kicks off the first in a series of pieces profiling leaders in high performance computing (HPC), writing for the... Read more…

By Brendan McGinty

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Building a Solid IA for Your AI

The journey to high performance precision medicine starts with designing and deploying a solid Information Architecture that addresses the spectrum of challenges from data and applications that need to be managed and orchestrated together to empower workloads from analytics to AI. Read more…

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have used the most cycles and typically drove hardware and softwa Read more…

By Elizabeth Leake

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

MIT Prepares for Satori…and a New 2 Petaflops Computer Too

August 27, 2019

Sometime this fall, MIT will fire up Satori – an $11.6 million compute cluster donated by IBM and coinciding with the opening of the MIT Stephen A. Schwarzma Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This