KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

By John Russell

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. It’s nice to have patient capital, a rare commodity for startups these days. The company contends its KNUPATH Hermosa processor with 256 DSP cores and its Lambda fabric will bring performance, scalability, energy, and programmability advantages over CPUs, GPUS, and FPGAs to a wide swath of machine learning applications. The first commercial boards – code named Mavericks – are expected around March this year.

Founded in the 2005 timeframe by Daniel Goldin, the long time NASA administrator, KnuEdge has raised roughly $100M no doubt stemming from investor confidence in Goldin’s extensive technology creation and delivery history. Goldin and company believe their investors’ patience is about to start paying off. KnuEdge has two business units, KNUPATH focused on hardware accelerators based on Hermosa and Lambda technology, and KnuVerse, focused on voice and face recognition systems. The latter, said Steve Cumings, CMO, KnuEdge, has customers in the government sector. Company revenues are somewhat north of $20 million so far.

Broadly, KnuEdge’s view is that a highly scalable processor in a single socket is handicapped in addressing growing machine learning and large-scale computing challenges. In contrast, the company’s Lambda Fabric enables a large number of “KNUPATH Hermosa processors to be interconnected in low latency, high throughput mesh for massively parallel processing which is well suited for application needs that will drive the compute engines of the future.”

This isn’t exactly a new idea. The Hermosa chip and Lambda technology will enter the market amid a gush of machine learning technologies all striving to advance data-driven science and enterprise data analytics. Indeed the emergence of heterogeneous computing architectures relying on a variety of accelerator engines is a key feature of today’s computing landscape. Given Goldin’s remarkable achievements at NASA it should be interesting to watch KnuEdge’s progress.

Early developer boards with two Hermosa chips have been available for some time. Volume sales of individual chips are planned to begin in January followed by the Mavericks offering, a PCIe board with four Hermosa chips, towards the end of the quarter.

Presented as a “neural computing” approach, the KNUPATH architecture actually attempts to mimic nervous system communication more than brain-inspired spiky neuron ‘inference logic’ (discussed further below).

Patrick Patla, senior vice president and general manager of KNUPATH and a former AMD executive, said, “What’s unique about Hermosa’s 256 DSP cores is that they are hooked together at a central part of the processor with a router that has 16 ports. Using the Lambda fabric, it’s possible, at least theoretically, to scale to 500,000 Hermosa processors.

“We are a data flow machine. So you push data through the system and can have the calculation and different algorithms change on the fly. We are different than a GPU accelerator in that they use a SIMD architecture. We use multiple programs, multiple data, so on our 256 cores we could have 256 separate algorithms running. You would push data through those algorithms and then you have hits on the data at different hit rates based on the algorithms and you can tune and resend algorithms to those DSPs through packets,” explained Patla.

“Basically the packets that we send through the Lambda network are what allows the programming of the DSP, so packets deliver the program, the algorithm, and then bring the payload, and push the data through it. Not only are you getting all the data and the operating instructions with each packet, but each core also knows the next destination for that information so it’s extremely efficient.” One result is very low latency at various systems levels (see diagram below).

Patla also contrasted Hermosa’s ease of use with emerging brain-inspired neuromorphic chips such as IBM’s TrueNorth, which uses “spiking neuron” architecture.

“Spiky algorithms are notoriously difficult to program. Commonly they are trained on other networks first and then moved onto the neuromorphic chip so the actual software side of that is different,” he said.

As noted earlier the Hermosa-Lambda architecture emulates neuronal connectivity more than brain processing. “If you look at the different neuron-based approaches, our inspiration really gives you lots of little engines – that’s the background of the DSP cores, what we affectionately sometimes call tDSPs or tiny DSPs,” said Patla. Reliance on familiar DSP architecture eases programming.

“Our tools sit on a C/C++ library set on top of LLVM (compiler). And everybody is familiar with OpenCL as well as OpenMPI which is very comfortable in our architecture,” said Patla. The Hermosa/Lambda architecture also supports NUMA (non uniform memory access) and each processor has memory directly (72MB) on it. “Much of the advantage is the dataflow but also all the advantages of common programming techniques for anybody that has worked on OpenMPI. Many of the other [neuromorphic] architecture require a different set of tools.”

Hermosa Development Board

KnuEdge has had a software developer kit out for “quite some time” and it is already in the hands of many developers, according to Patla.

It all sounds great. In April KnuEdge will hold a Hermosa developers’ conference at UCSD as well as a “heterogeneous neural network conference” in partnership with UCSD for the development of next generation algorithms that can take advantage of new architectures such as Hermosa. Patla said performance benchmarks for chip will be forthcoming with the release of the commercial product; it seems like the developer conference would be a good place to do so, but he wouldn’t specify when beyond the first half of the year.

“Right now, as you would imagine, we are in the labs with our SDKs and final verification of those commercial systems as we are tuning and bringing all of our code to the processors. In the future we’ll show configurations of 4, 8, 12, 16, Hermosas together to show the scalability of the Lambda fabric. When Steve talked about mimicking the nervous systems it really is about our connectivity and the fact that when you add more Hermosas to the network, we continue to scale because with every socket you are adding more memory as well. Each processor has 72MB of onchip memory that is sufficient for the programming of our kinds of algorithms and the workload we are trying to tackle.”

Currently the chip is being fabbed by GLOBALFOUNDARIES on the 32nm process. “It’s a well behaved chip where these 256 cores and fabric and everything lives in a 35-watt part,” said Patla.

The KNUPATH folks believe Hermosa has the potential to meet a wide variety of machine-learning kinds of applications performed in heterogeneous computing environments as well as an opportunity to replace existing approaches to those applications.

‘We have a demo on the website that compares us to the most current NVIDIA card and we have a 2.5x performance. It is very interesting that a video card isn’t very good at video compression that we are good at because of the parallelism of communication we handle across the memory. So that’s one of the spaces we’ll be aiming at. And of course it will also find its way into many of the single board computer spaces because at 35 watts and the ability to do signal processing and such fine grained computing we actually expect it to replace many FPGAs in a lot of environments.”

Patla argues Hermosa/Lambda’s flexibility is a major benefit and door opener – one could divvy the chips up and have a multipurpose SOC instead of dedicating it to just one task. He used a video analysis application as an example of flexibility and reprogrammability.

“You can reprogram a core by just delivering a new packet. For example, if you were doing video analysis and were searching within videos, you could be looking for ball caps. You could have all the different algorithms looking at ball caps and you could just all of a sudden reprogram and divide the chip and have 25 percent of the chip looking for red ball caps and 25 percent looking for blue caps. You could flip to four different algorithms in nanoseconds. Then when you have high hit rates and you realize the one you are really looking for, and you could say OK now all care about our green ball caps and that algorithm would propagate against all the cores and you’d be able to take your throughput up. It’s very fast, very flexible,” he said.

At SC16, the KNUPATH team was busily evangelizing. Patla said they talked to a number of cloud providers as well as national labs that expressed interest to the point that he is expecting some new workloads to emerge.

There’s still much to do. Patla ticked off desirable milestones for 2017 – getting out of the lab, showcasing a couple of commercial customers and workloads, integrating the many machine learning frameworks, making sure Hermosa-based systems get into the cloud somewhere for development and production purposes, to name but a few.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This