KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

By John Russell

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. It’s nice to have patient capital, a rare commodity for startups these days. The company contends its KNUPATH Hermosa processor with 256 DSP cores and its Lambda fabric will bring performance, scalability, energy, and programmability advantages over CPUs, GPUS, and FPGAs to a wide swath of machine learning applications. The first commercial boards – code named Mavericks – are expected around March this year.

Founded in the 2005 timeframe by Daniel Goldin, the long time NASA administrator, KnuEdge has raised roughly $100M no doubt stemming from investor confidence in Goldin’s extensive technology creation and delivery history. Goldin and company believe their investors’ patience is about to start paying off. KnuEdge has two business units, KNUPATH focused on hardware accelerators based on Hermosa and Lambda technology, and KnuVerse, focused on voice and face recognition systems. The latter, said Steve Cumings, CMO, KnuEdge, has customers in the government sector. Company revenues are somewhat north of $20 million so far.

Broadly, KnuEdge’s view is that a highly scalable processor in a single socket is handicapped in addressing growing machine learning and large-scale computing challenges. In contrast, the company’s Lambda Fabric enables a large number of “KNUPATH Hermosa processors to be interconnected in low latency, high throughput mesh for massively parallel processing which is well suited for application needs that will drive the compute engines of the future.”

This isn’t exactly a new idea. The Hermosa chip and Lambda technology will enter the market amid a gush of machine learning technologies all striving to advance data-driven science and enterprise data analytics. Indeed the emergence of heterogeneous computing architectures relying on a variety of accelerator engines is a key feature of today’s computing landscape. Given Goldin’s remarkable achievements at NASA it should be interesting to watch KnuEdge’s progress.

Early developer boards with two Hermosa chips have been available for some time. Volume sales of individual chips are planned to begin in January followed by the Mavericks offering, a PCIe board with four Hermosa chips, towards the end of the quarter.

Presented as a “neural computing” approach, the KNUPATH architecture actually attempts to mimic nervous system communication more than brain-inspired spiky neuron ‘inference logic’ (discussed further below).

Patrick Patla, senior vice president and general manager of KNUPATH and a former AMD executive, said, “What’s unique about Hermosa’s 256 DSP cores is that they are hooked together at a central part of the processor with a router that has 16 ports. Using the Lambda fabric, it’s possible, at least theoretically, to scale to 500,000 Hermosa processors.

“We are a data flow machine. So you push data through the system and can have the calculation and different algorithms change on the fly. We are different than a GPU accelerator in that they use a SIMD architecture. We use multiple programs, multiple data, so on our 256 cores we could have 256 separate algorithms running. You would push data through those algorithms and then you have hits on the data at different hit rates based on the algorithms and you can tune and resend algorithms to those DSPs through packets,” explained Patla.

“Basically the packets that we send through the Lambda network are what allows the programming of the DSP, so packets deliver the program, the algorithm, and then bring the payload, and push the data through it. Not only are you getting all the data and the operating instructions with each packet, but each core also knows the next destination for that information so it’s extremely efficient.” One result is very low latency at various systems levels (see diagram below).

Patla also contrasted Hermosa’s ease of use with emerging brain-inspired neuromorphic chips such as IBM’s TrueNorth, which uses “spiking neuron” architecture.

“Spiky algorithms are notoriously difficult to program. Commonly they are trained on other networks first and then moved onto the neuromorphic chip so the actual software side of that is different,” he said.

As noted earlier the Hermosa-Lambda architecture emulates neuronal connectivity more than brain processing. “If you look at the different neuron-based approaches, our inspiration really gives you lots of little engines – that’s the background of the DSP cores, what we affectionately sometimes call tDSPs or tiny DSPs,” said Patla. Reliance on familiar DSP architecture eases programming.

“Our tools sit on a C/C++ library set on top of LLVM (compiler). And everybody is familiar with OpenCL as well as OpenMPI which is very comfortable in our architecture,” said Patla. The Hermosa/Lambda architecture also supports NUMA (non uniform memory access) and each processor has memory directly (72MB) on it. “Much of the advantage is the dataflow but also all the advantages of common programming techniques for anybody that has worked on OpenMPI. Many of the other [neuromorphic] architecture require a different set of tools.”

Hermosa Development Board

KnuEdge has had a software developer kit out for “quite some time” and it is already in the hands of many developers, according to Patla.

It all sounds great. In April KnuEdge will hold a Hermosa developers’ conference at UCSD as well as a “heterogeneous neural network conference” in partnership with UCSD for the development of next generation algorithms that can take advantage of new architectures such as Hermosa. Patla said performance benchmarks for chip will be forthcoming with the release of the commercial product; it seems like the developer conference would be a good place to do so, but he wouldn’t specify when beyond the first half of the year.

“Right now, as you would imagine, we are in the labs with our SDKs and final verification of those commercial systems as we are tuning and bringing all of our code to the processors. In the future we’ll show configurations of 4, 8, 12, 16, Hermosas together to show the scalability of the Lambda fabric. When Steve talked about mimicking the nervous systems it really is about our connectivity and the fact that when you add more Hermosas to the network, we continue to scale because with every socket you are adding more memory as well. Each processor has 72MB of onchip memory that is sufficient for the programming of our kinds of algorithms and the workload we are trying to tackle.”

Currently the chip is being fabbed by GLOBALFOUNDARIES on the 32nm process. “It’s a well behaved chip where these 256 cores and fabric and everything lives in a 35-watt part,” said Patla.

The KNUPATH folks believe Hermosa has the potential to meet a wide variety of machine-learning kinds of applications performed in heterogeneous computing environments as well as an opportunity to replace existing approaches to those applications.

‘We have a demo on the website that compares us to the most current NVIDIA card and we have a 2.5x performance. It is very interesting that a video card isn’t very good at video compression that we are good at because of the parallelism of communication we handle across the memory. So that’s one of the spaces we’ll be aiming at. And of course it will also find its way into many of the single board computer spaces because at 35 watts and the ability to do signal processing and such fine grained computing we actually expect it to replace many FPGAs in a lot of environments.”

Patla argues Hermosa/Lambda’s flexibility is a major benefit and door opener – one could divvy the chips up and have a multipurpose SOC instead of dedicating it to just one task. He used a video analysis application as an example of flexibility and reprogrammability.

“You can reprogram a core by just delivering a new packet. For example, if you were doing video analysis and were searching within videos, you could be looking for ball caps. You could have all the different algorithms looking at ball caps and you could just all of a sudden reprogram and divide the chip and have 25 percent of the chip looking for red ball caps and 25 percent looking for blue caps. You could flip to four different algorithms in nanoseconds. Then when you have high hit rates and you realize the one you are really looking for, and you could say OK now all care about our green ball caps and that algorithm would propagate against all the cores and you’d be able to take your throughput up. It’s very fast, very flexible,” he said.

At SC16, the KNUPATH team was busily evangelizing. Patla said they talked to a number of cloud providers as well as national labs that expressed interest to the point that he is expecting some new workloads to emerge.

There’s still much to do. Patla ticked off desirable milestones for 2017 – getting out of the lab, showcasing a couple of commercial customers and workloads, integrating the many machine learning frameworks, making sure Hermosa-based systems get into the cloud somewhere for development and production purposes, to name but a few.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire