AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

By Linda Barney

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country’s premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off.

The new Cray CS400 system, nicknamed “Ollie” by AWI staff was installed in April 2016 and is being phased in for use by researchers across AWI. Ollie made it into the Top500 in June (365) and most recently in November (473). The system uses the Intel Xeon processor E5-2600 v4 (Broadwell) as well as Intel’s Omni-Path Architecture (OPA) fabric. The file systems chosen was BeeGFS (formerly FhGFS) parallel cluster file system to spread user data across multiple servers to improve performance and capacity scaling.

AWI now uses its new supercomputer to run advanced research applications related to climate and environmental studies, including global circulations models, regional atmospheric models, glaciology studies and other computing-intensive, numerical simulations such as bioinformatics protein simulations.

“We have just started running on the Cray HPC system and have ported the main ice flow models and are starting to do Paleo ice sheet simulations on it,” said Thomas Kleiner whose glaciology research contributes to the understanding of ice sheet dynamics in the earth system and the impact of climate change. “The new system is much larger and allows us to run more detailed simulations such as simulations of Antarctica at 5km resolutions which was not possible on our older systems. It also allows us to do many simulations at the same time which helps in our research.”

“However, we also want to run simulations further back in time which is very important for climate change modeling at AWI. Compared to other components in the earth system (e.g. atmosphere or ocean), ice sheet models are relatively inexpensive in terms of computational recourses if they run for only a few thousands years, but ice sheets have a long memory of the past climate and therefore models need to be run over very long time scales (several glacial cycles).

“Running a 1,000 year simulation of Antarctica at a 10km resolution (573 x 489 x 101 grid nodes) for climate and glacier research requires 114 CPU hours on the Cray CS400 system. However, we need a resolution of 5km to get adequate detail and also need to run multiple simulations with varying parameters for model uncertainty estimates. What we currently have to do is run simulations at a coarser resolution for many thousands of years until around 10,000 years before the present time and then run simulations at 5km resolution, where the 5km setup (1145 x 977 x 201 grid nodes) already requires 420 CPU hours per 100 years. Every model improvement in terms of considered physics requires a complete recalibration of the model to match observations (although very sparse). The parameter space is huge and needs to be investigated carefully.

“We have relevant small-scale (less than a km) processes that are controlling ice sheet internal dynamics, and on the other side global atmospheric and ocean models that deliver climatic boundary conditions to the ice sheet on course grids but require very short time steps (hours to seconds). Thus, HPC systems of the future are needed to allow us to bridge the gap between the different scales (spatially and temporally) in fully coupled Earth system models including ice sheets.”

Bioinformatics Research
In 2004, AWI established a bioinformatics group to provide services to projects requiring bioinformatics and data analysis background. This group participates in data analyses in diverse projects including phylogenetics, phylogenomics, population genetics, RNA-Seq and metatranscriptomics.

Lars Harms, a bioinformatics researcher at AWI, a new user to HPC systems, is using the Cray system to speed up metatranscriptomics research and in some cases to enable the analysis at all. “Our metatranscriptomics research, helps to analyze the functional diversity and the state of organism communities in their taxonomic composition with response patterns to environmental change, to gradients, or ecological dynamics. Processing the associated large datasets on the Cray HPC system help to speed up otherwise time-consuming tasks. Furthermore, the multi-purpose concept of the AWI Cray system including some high-memory nodes is a big advantage for our research enabling us to assemble large-scale metatranscriptomes that is not possible on the existing small-scale servers due to lack of memory.”

Harms is also performing functional annotations using BLAST and HMMER code on the Cray CS400 system. “BLAST and HMMER are typically very time consuming to run. We are using the Cray system to process these tasks in a highly parallel manner which provides a huge speed up compared to our existing platforms.” Harms found a way to speed up analyzing large datasets of protein sequences using HMMER3 even further by copying the entire hmm-database onto solid state drives (SSDs) attached directly to the system nodes. This resulted in a huge speed up due to the faster data transfer rates with the SSDs in comparison to the file system of the Cray system (Figure 1).

One challenge that Harms still faces is the need to optimize software. He said, “Much of the existing software code and tools were developed to work on a single server and need to be optimized to take advantage of parallel processing capabilities of modern processors and HPC systems.”

Given the high cost of energy in Europe, maximizing energy efficiency is a top AWS priority. Malte Thoma, AWI system administrator, emphasized that energy efficiency was a major consideration when selecting a new HPC system. The Cray CS400 is an air cooled system that can control energy consumption on a per job level by allowing users and administrators to set the maximum frequency of the processor. This is done by using a cpu frequency setting in the slurm.epilog and slurm.prolog files as well as an AWI written bash-script tool which reduces maximum performance if the temperature in the room exceeds specific limits. The CS400 system provides the ability to set a general power limit for all or a fraction of nodes to conserve energy using features of the Intel Node Manager (server firmware that provides fine-grained power control).

When the Cray CS400 system is running each node and CPU, it consumes approximately 150KW of power. If the system is idle and CPUs are in HPC performance mode, it consumes 100KW. If all nodes are switched into the power save mode and the computer is idle, energy usage goes down to 55 KW—which is a reduction of almost a third in energy usage. The system can also switch between a performance mode and a power save mode. When a user starts a job, the nodes are put into performance mode but automatically switch back to power save mode when the job finishes.

Unique Modeling and System Profiling Tools
AWI scientists develop software systems, tools or libraries to support AWI staff on their individual research. The researchers, system administrator and IT team use Cray and Intel compilers as well as other tools in optimizing code. There are a number of existing AWI projects such as FESOM, MITgcm and MPI-ESM running on other platforms which are not yet run on the Cray system. The team is also performing benchmarking or profiling work on MPI or OpenMP modifying code to improve parallelization and vectorization.

According to Dr. Natalja Rakowsky, “A major optimization was performed when the sea-ice-ocean-model FESOM was redesigned switching from finite elements to finite volumes. The data structure was improved considerably. Both codes operate on a grid that is unstructured-triangular in the horizontal, and consists of layers in 3D (Z coordinates). FESOM collects the variables along the horizontal first, layer by layer. This results in indirect addressing in all loops, and in a lot of cache misses, because many computations are performed along the vertical. FESOM2 has the vertical as the first dimension, allowing direct addressing along the inner loop and often vectorization becomes possible. Cache misses remain an issue in all 2D (horizontal) computations. Here, we found a way to renumber the grid nodes to reduce the number of cache misses, see http://epic.awi.de/30632/1/IMUM2011_SFC_Rakowskyetal.pdf (the code presented here, TsunAWI, can be regarded as a simplified, 2D-only branch of FESOM).”

Other optimizations in preparation are:

  • reduce load inbalancing by a better domain decomposition (getting a high quality equal distribution of 2D and 3D nodes is not easy, and sea ice is not even taken into account yet)
  • asynchronous MPI
  • check major loops for vectorization, avoid some divisions (replace by precomputed inverse)
  • from serial to parallel I/O

The glaciology, bioinformatics and other research at AWI continue to generate huge amounts of data that will take advantage of the HPC resources. “For our research, we must find ways to process all of this data. Supercomputers can help us solve the issue of processing more data quickly, allowing us to do research that was not possible before,” states Harms.

Author Bio:
Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This