UberCloud Cites Progress in HPC Cloud Computing

By Wolfgang Gentzsch and Burak Yenier

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. This article summarizes major findings, a discussion of roadblocks and how they have been resolved, and offers three examples from the latest 2016 Compendium of HPC cloud case studies.

HPC cloud experiments demonstrate progress in HPC cloud computing

After four years and 200 cloud experiments we are now able to measure cloud computing progress, objectively. Looking back four years at our first 50 cloud experiments, 26 of them failed or didn’t finish, and the average duration of the successful ones was about three months. Four years later, in 2016, looking at our last 50 cloud experiments, none failed; and the average duration of these experiments is now just about three days. That includes defining the application case, preparing and accessing the engineering application software in the cloud, running the simulation jobs, evaluating the data via remote visualization, transferring the final results back on premise and writing a case study. Selected case studies from these last 50 cloud experiments were recently published in the 2016 Compendium.

Resolving major cloud roadblocks

In the early days of HPC in the cloud, around 2012, the HPC user community faced severe roadblocks and challenges; major ones were: perceived security risk; traditional software licensing; porting software to the cloud; unknown price/performance of cloud resources; complexity of cloud access and use; HPC and cloud expertise to port existing applications to the cloud; and losing control over the application job, the data, and the computing resources in the cloud. Four years later, today, most of these cloud roadblocks have disappeared (or at least the concern about them), one after the other, thanks to a collaborative effort of the growing cloud service provider community.

Security was the number one roadblock in 2012 when speculations about perceived vulnerability of cloud datacenters often predominated over hard facts. Today, security still is a concern, but it is mainly a cultural one. Some people believe that when data is held internally it is within an organization’s own control, they can decide on the level of security to place around that data, and once data moves to a cloud service platform this control is reduced. However, security experts widely agree that cloud datacenters are at least as secure as any other datacenter on earth, well-guarded by top security specialist teams and a sophisticated security architecture. Almost all of the massive data breaches we’ve seen lately were within traditional on-premise IT.

The number of companies moving their workloads to the cloud is steadily increasing. Companies like Capital One and General Electric are gaining tremendous advantage by using the public cloud. Officials from Bank of America and Goldman Sachs admit they too are using cloud services and other emerging technology like containers. And the recent IDC Study Worldwide Cloud 2016 Predictions speaks for itself: public IT cloud services spending reached $57.8 billion in 2015 and over $112 billion in 2019, with a compound annual growth rate (CAGR) of 18.3% — about six times the rate of overall IT market growth.

Figure 1: Container security architecture.

Most recently, with the advent of software container technology for HPC applications, security can be further enforced and controlled by integrating https/VPN access, OS firewall, PKI login, and disk encryption, and especially in HPC the containers are running on dedicated compute nodes (no multi-tenency) for high performance reasons.

The next issue is software licensing. For many years, software vendors resisted more flexible, short-term, or even on-demand licensing models because they were concerned that cloud business models would disrupt their proven business model based on annual perpetual licensing. Only when they understood that a correctly implemented cloud model would be complementary to their traditional licensing model and create additional revenue were they ready to start experimenting with their software in the cloud. Today, most forward-looking software providers have (or are currently developing) their own cloud licensing model and an additional cloud-based offering.

Figure 2: Resolving cloud licensing: wherever the software license resides it can be transferred to the cloud.

Another major cloud roadblock a few years ago was the belief that—unlike enterprise software—engineering application software was not well suited for cloud; it had to be ‘cloud-enabled’ first. In fact, the solution for this roadblock came from the bottom-up, from hardware, as more and more cloud service providers added scalable high performance computing (HPC) to their server mix, with the fastest CPUs, InfiniBand, and GPU (graphics processing unit) acceleration.

Among the major roadblocks back in 2012 was also the cost of cloud. There was some confusion in the market by comparing apples to oranges, for example comparing price/performance of a bunch of Amazon $10 AWS instances that are well-suited for typical mid-size HPC applications at small- and medium-size businesses (SMBs) to fully utilized sophisticated million-dollar supercomputers at national HPC centers. Those distortive comparisons damaged the reputation of early cloud providers quite a bit, especially in the SMB market. In the meantime, however, there is clarity again because it’s easy to get cost and performance information from any cloud provider, and it is now well-known that comparisons to on-premise hardware must take into account total cost of ownership. And yes, supercomputing – with the need of thousands of cores and tightly coupled compute nodes – should be done on real (and expensive) supercomputers.

In the early days of cloud computing, users often got lost in the cloud complexity of accessing and using cloud resources, and once using one cloud they were not able to easily hop on another cloud when needed (trapped in vendor lock-in). With the advent of software container technology for HPC applications this complexity is disappearing. Software containers (see additional details below) bundle OS, libraries and tools, as well as application codes and even complex engineering and scientific workflows, and run on any cloud. Today, with software containers, it is easily possible to access your application and data through your browser in any cloud, public or private, the same way you access your desktop workstation.

Finally, a major issue is about losing control while using cloud resources: Engineers are used to fully controlling their own workstation, know well about its configuration, the applications executed on the system, the activities of the resources (cores, memory) via monitoring tools, etc.  However, in the cloud, the user is often confronted with artificial cloud user interfaces which shield the user from the cloud resources, application jobs, and data; no way for the user to monitor resources and jobs in real-time; no way to work interactively while jobs are running. And here again, software containers are a way to bring all these benefits back to the user who, within a second, logs into her personal desktop (= software container) in the cloud, and interacts with her resources, applications, and data, the same way she is used to interacting with her own desktop workstation.

In 2013 Docker containers saw the light of day

A major breakthrough to resolve many of these cloud roadblocks came when Docker announced its Linux container technology in early 2013. Docker is a Linux-based system that makes use of a userspace interface for the Linux kernel containment features. Rather than being a self-contained system in its own right, and unlike virtual machines, a Docker container shares the Linux kernel with the operating system running the host machine. It also shares the kernel with other containers that are running on the host machine. That makes Docker containers extremely lightweight.

Still it took us almost a year to develop on top of the micro-service Docker container technology – the (what we call) ‘macro-service’ production-ready HPC layers – and another year for enhancing and testing with a dozen of engineering applications and complex workflows, on a dozen different HPC single- and multi-node HPC cloud resources. These high performance interactive software containers, whether they be on premise, on public, or on private clouds, bring a number of core benefits to the otherwise traditional HPC environments with the goal to make HPC widely available, ubiquitous: packageability, portability, accessibility, usability, and scalability. We introduced these software containers in in January 2015, and with a summary of major benefits and their impact on the democratization of HPC in January 2016.

Figure 3: Cloud roadblocks resolved by software containers.

Taking all this into account, for many real-life applications out there, a healthy (hybrid) mix of in-house and remote cloud computing can often be recommended, with cloud complementing on-premise resources, and adding benefits like seamless and interactive access and use, flexibility, business agility, resource reliability, dynamic up-and-down resource scaling according to need, pay-per-use, and ever-growing never-aging computing resources to the mix.

Examples of HPC in the Cloud

Here are summaries of three of the 19 case studies in the 2016 UberCloud Compendium. This compendium, the case studies and the corresponding engineering cloud experiments have been generously sponsored by Hewlett Packard Enterprise, Intel, and Digital Engineering.

Team 169: Complex Blood Flow through a Cardiovascular Medical Device Using OpenFOAM in the Advania Cloud

This team consisted of the end-user Praveen Bhat, an Indian CAE consultant, and partners from HPE France, CFD Support in Prague, and Advania in Iceland. During this one week proof of concept, the team set up a technical computing environment on the Advania Cloud Platinum instances. OpenFOAM, the popular open source CFD toolkit, was used to simulate complex blood flow through a cardiovascular medical device. Pre-processing, simulation runs and post-processing steps were performed successfully with the OpenFOAM container coming with a fully equipped, powerful virtual desktop in the cloud and containing all the necessary software, data and tools.

Figure 4: Team 169 – Streamlines, representing the path the blood flows in the artery and at the inlet of the medical device, using ParaView running inside an UberCloud container on the Advania cloud.

On a Platinum 3X Large instance, the SimpleFOAM solver ran on 16 cores in parallel for 1,000 time-steps of the cardiovascular device simulation in 30,000 seconds (roughly 8 hours). The total effort (without the eight-hour simulation run time) was six person hours to access Advania’s OpenCloud, get familiar with the environment, set up the OpenFOAM container, conduct testing, develop the medical application geometry and boundary conditions, start the jobs and do the post-processing with ParaView. It also included contacting and talking to Advania Support:

  • 2 hours setting up a test account, getting familiar with GUI, requesting increase in quotas
  • 1 hour setting up container environment, getting the base container, doing a quick test
  • 3 hours setting up medical device simulation, including steps like meshing, running the simulation (5 times), monitoring, opening tickets with support, etc.

Team 175: Parametric Radio Frequency Heating with COMSOL Multiphysics in CPU 24/7’s Cloud

This cloud experiment has been performed by the COMSOL team in Gottingen, Germany, to evaluate the performance of a COMSOL Multiphysics container in the CPU 24/7 cloud. For this project, the parametric radio frequency (RF) heating model from the COMSOL Multiphysics application library was used. It shows dielectric heating of an insulated block, caused by microwaves traveling in an H-bend waveguide. The solver has been parallelized so that several frequencies and geometric parameters can be computed at the same time. This model yields what is called an embarrassingly parallel computation, well suited for scaling in the cloud.

Figure 5: Team 175 – Simulated H-Bend Waveguide. Left image shows the magnetic field (Arrows) of the waveguide and the temperature in the dielectric block (yellow). The image to the right shows the speed up gained when adding more compute nodes in the cloud.

Although the model is quite small and possible to compute on almost any modern computer, the amount of frequencies that need to be computed, together with the different geometric parameters, meant a high number of simulations would need to be performed. Even if the computation of one parameter only takes 30 minutes on a mid-sized workstation, the total computation times can become unacceptably large when the number of parametric values increases. The benchmarks were performed for one through 10 compute nodes (each equipped with dual Intel Xeon X5670 processors and 24GB of RAM). After the simulations finished, the computed results were collected and evaluated.

Team 187: CFD Analysis of a V6 intake manifold using STAR-CCM+ in the Azure Cloud

The end user of this cloud experiment was Krishnan Nayanar, project manager at CAE Technology Inc., supported by Siemens PLM Software providing STAR-CCM+ PoD tokens, and Microsoft Azure as the cloud provider. This case study is about the intake manifold of an automotive engine, which is a critical system as careful design of this component for pressure drop directly relates to the engine efficiency. In a V6 manifold, it is also important to achieve a uniform flow rate across each branch of the intake duct. The flow analysis in this case study using CFD simulation software provides a thorough understanding of these parameters and helps in designing efficient and economical manifolds.

The computations were performed on Azure A9 Instances, with a 10-node class “medium” cluster, where eight compute nodes were equipped with dual socket Intel Xeon CPU E5-2670 running at 2.6GHz and 112GB of RAM, giving a total count of 128 cores and 1TB of RAM. The nodes were connected with a 40Gbit/s InfiniBand network with remote direct memory access (RDMA) technology. The software used for the simulation was STAR-CCM+ V10.04. The simulation was continued until 10,000 iterations, and all the monitors stabilized.

Figure 6: Team 187 – CFD analysis of automotive V6 intake manifold using a software container with STAR-CCM+ in the Azure Cloud. Left: manifold geometry. Right: velocity streamlines from CFD simulation.

Total time taken on the 128-core Azure cluster to mesh 3.47 million cells with five boundary layers was 17.7 minutes, and total time to run 10,000 iterations was five hours and 20 minutes.


This article is based in part on two articles which appeared in December 2016 in Digital Engineering.

About the Authors

Wolfgang Gentzsch and Burak Yenier are the founders of The UberCloud, a marketplace where engineers and scientists find the computing horsepower, software and expertise to solve their demanding problems.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Expands Worldwide Availability to AMD-based Instances

July 22, 2019

Setting aside potential setbacks caused by U.S. trade policies, the steady cadence of AMD’s revival in HPC and the datacenter continued last week with AWS expanding availability of its AMD Epyc-based instances. Recall Read more…

By Staff

Microsoft Investing $1B in OpenAI Artificial General Intelligence R&D

July 22, 2019

Artificial general intelligence (AGI) is AI’s moonshot, the next giant leap for the AI field. Microsoft regards it to be feasible enough to warrant a $1 billion investment in OpenAI, the not-for-profit research organi Read more…

By Doug Black

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

With HPC the Future is Looking Grid

Gone are the days when problems such as unraveling genetic sequences or searching for extra-terrestrial life were solved using only a single high-performance computing (HPC) resource located at one facility. Read more…

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Microsoft Investing $1B in OpenAI Artificial General Intelligence R&D

July 22, 2019

Artificial general intelligence (AGI) is AI’s moonshot, the next giant leap for the AI field. Microsoft regards it to be feasible enough to warrant a $1 billi Read more…

By Doug Black

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This