HPC Startup Advances Auto-Parallelization’s Promise

By Tiffany Trader

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. In fact with the various programming standards, like OpenMP and OpenACC, evolving at a rapid pace, keeping up with the latest and best practices can be daunting, especially for domain scientists or others whose primary expertise is outside HPC programming. Auto-parallelization tools aim to ease this programming burden by automatically converting sequential code into parallel code. It’s one of the holy grails of computing, and while there are a handful of projects and products that support some degree of auto-parallelization, they are limited in what they can do.

HPC startup Appentra believes it has a unique approach to a classic HPC problem. The company’s Parallware technology is an LLVM-based source-to-source parallelizing compiler that assists in the parallelization of scientific codes with the OpenMP and OpenACC standards. CEO Manuel Arenaz refers to the process as guided parallelization.

Appentra was formed in 2012 by a team of researchers from the the University of A Coruña in Spain under the leadership of Arenaz, a professor at the university. 2016 brought some notable recognition. Last April, Appentra was selected as a 2016 Red Herring Top 100 Europe Winner, signifying the promising nature of the technology and its market-impact potential. And in November, the startup participated in the Emerging Technologies Showcase at SC16.

We recently spoke with the company’s CEO and co-founder to learn more about the technology and commercialization plans.

“Parallelization has remained an open problem since the 80s,” says Arenaz. “Nowadays there is still not a product that can really help users to parallelize their code — not just simple [benchmark] codes, but mini apps or fragments or snippets of codes of large applications running on supercomputers. The parallelization stage [of the five-stage HPC programming workflow — see graphic] is where we provide value to the HPC community and what we do is try to make it easier to automatize some of the parts of this manual process that is converting the code from sequential to parallel.”

Appentra’s product roadmap currently includes two tools, Parallware Trainer and Parallware Assistant, with the former due out later this year. Both will be sold under a subscription software licensing model, initially targeting academic and research centers.

Parallware Trainer will be the first product to market. It is billed as an “interactive real-time desktop tool that facilitates learning, implementation, and usage of parallel programming.” The purpose of the tool is to train the user, test the environment, and provide insights on the how the sequential code can be improved.

The key features of Parallware Trainer are summarized as follows:

  •  Interactive real-time editor GUI
  •  Assisted code parallelization using OpenMP & OpenACC
  •  Programming language C
  •  Detailed report of the parallelism discovered in the code
  •  Support for multiple compilers

“You can conceive the Parallware Trainer tool as Google Translator but instead of going from English to Spanish, it goes from sequential code to parallel code annotated with OpenMP or OpenACC pragmas,” says Arenaz.

“It enables learning by doing, is student-centric, and allows the student to play with more complex codes even during the training. It enables playing not only with lab codes prepared by the teacher, but also with codes students are writing at their office, so they can really begin to apply the concepts to their own codes, facilitating a smooth transition back to the office.”

Appentra is finishing work on the Parallware Trainer package now and plans to release it in an early access program during Q1 of this year with a general launch slated for Q2 or Q3 of this year.

With the training tool, users are not provided access to the information that the technology considered in order to discover the parallelism and implement the parallelization strategy. In the learning environment, the black box nature of the tool is warranted because having access to that information creates unnecessary complexity for someone that is learning parallel programming. Experts of course want to have full drilldown into the decisions that were made; they want full control. So in Parallware Assistant, which targets HPC developers, Appentra will provide complete details of all the analysis conducted on the program.

Appentra’s goal with both products is to move up the complexity chain from microbenchmarks to mini-apps to snippets of real applications.

“From the point of view of the Parallware Trainer tool, the level of complexity at the microbenchmark is enough for learning parallel programming, but looking at the Assistant and looking at using the Parallware Trainer even with more complex codes, like mini-apps or snippets of real applications, we need to increase the matureness of the Parallware technology,” says Arenaz.

“So we are also working toward providing a more robust implementation of the technology with the complexity of the mini-app. We are looking at inter-procedural discovery of parallelism through a procedural fashion in code that uses structs and classes not only plain arrays. These are some of the features that are not usually present in microbenchmarks but are present in mini-apps and of course real applications.”

Appentra is developing its technology in collaboration with a number of academic partners. The startup has worked most closely with Oak Ridge National Lab (HPC researchers Fernanda Foertter and Oscar Hernandez have been instrumental in developing tools based on the company’s core tech), but also has industrial partnerships lined up at the Texas Advanced Computing Center and Lawrence Berkeley National Lab. In the European Union, the Parallware Trainer has been used as part of training courses offered at the Barcelona Supercomputing Center, which Appentra cites as another close partner.

Appentra has also been accepted as a member of OpenPower and sees an opportunity to connect with the other academic members.

“Our research has told us that universities should be interested in using this tool for teaching parallel programming – and not only computer science faculties, but also mathematicians, physicists, chemists – they also really need parallel programming but it is too complex for them,” says Arenaz. “They want to focus on their science not on the complexity of parallel programming, but they need to learn the basics of it.”

Arenaz acknowledges that there are other tools in the market that provide some level of auto-parallelization but claims they don’t offer as much functionality or value as Parallware.

“The Cray Reveal is only available on Cray systems and is very limited. It cannot guarantee correctness when it adds OpenMP pragmas for instance,” the CEO says. “It doesn’t support OpenACC. It only supports a very small subset of the pragmas of OpenMP. It doesn’t support atomic. It doesn’t support sparse computations. It has many technical limitations, apart from only being available in Cray supercomputers. And the other [familiar] one, the Intel Parallel Advisor, is mainly a tool that enables the user to add parallelism, but again it doesn’t guarantee correctness.

“In both tools, it is the user that is responsible for guaranteeing that the pragmas that are noted in the code are correct and are performant. That is something that our Parallware technology overcomes and solves. This is from the point of view of the technology itself among similar products in the market. If we focus on training from the point of view of the Parallware Trainer, there is no similar product on the market. No tool we are aware of — and we have talked with all these big labs and supercomputer centers — enables interactive HPC training as the Parallware Trainer tool does.”

One of the chief aims of Parallware technology is helping users stay current on standards from OpenMP and OpenACC. With standards evolving quickly, Appentra says this is where users will find a lot of value.

“OpenMP and OpenACC are evolving very fast. Each year they are more and more complex because 3-4 years ago they only supported one programming paradigm, the data parallel paradigm. But they have incorporated the tasking paradigm and the offloading paradigm to support GPUs, Xeon Phis, and any type of accelerator that can come into the market in the future pre-exascale and exascale supercomputing systems. So the hardware is evolving very fast and all of the labs and all of the vendors are working at the level of OpenMP and OpenACC to provide features in the standard that support the new features in the hardware, but this is making the standards very big and opening up many possibilities for the user to program in parallel the same piece of code, so this is opening up another range of complexity to the user.

“So we keep track of these standards, we keep track of the features of the code because every single source code is unique. It has some slightly different features that makes it different from other very similar code even in the same computational field. That is our job mainly at the Parallware development team, to keep track of these features, select the most important features, select the most important features in the OpenMP and OpenACC standards and connect them through Parallelware technology, through this magic component that is the converter from sequential to parallel. That’s our work and that’s where the high-added value of our tools derives.”

Right now, Appentra is focused on adding the higher-complexity features of the OpenMP and OpenACC standards, but MPI is also in their sites.

“When we started the company, we created a prototype that automatically generated MPI code at the microbenchmark and it is something [we do] internally in our group. The problem that we faced is we were claiming that we were able to automatically parallelize codes using OpenMP, OpenACC and MPI but industry labs and supercomputing facilities didn’t even believe that we could do it for OpenMP, so we decided to stay focused on the standards that are easier for us to parallelize because as a startup company we need to focus on the low-hanging fruit.”

Here’s one example of how a Parallware implementation stacks up to hand-parallelized code from the NAS Parallel Benchmarks suite, a small set of programs designed at NASA to help evaluate the performance of parallel supercomputers. The red line shows the speedup gained with the parallel OpenMP implementation provided in the NAS parallel benchmark implementation. The green line is the OpenMP parallel implementation automatically generated by the Parallware technology. You can see that for a given number of threads the execution time is very close.

Source: Paper OpenMPCon (Sep 2015); Bench: NPB_EP

Initially, Appentra supports the C language, but Fortran is on their roadmap. Says Arenaz, “We are aware that 65-70 percent of the HPC market at this moment in big labs is Fortran code and the remaining 30-35 percent is C code. The reason why we are not supporting Fortran at this moment is a technical issue. We are based on the LLVM infrastructure, which only supports C at this time. It doesn’t support Fortran. Support for Fortran is a work in progress by PGI and NVIDIA through a contract with the national labs. We are partners of Nvidia so we will have early access to the first releases with Fortran support for LLVM. So we are working on Fortran support and we expect it might be some of the new features we might announce at Supercomputing next year.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This