Heresies of the New HPC Cloud Universe

By John Russell

January 25, 2017

Perhaps ‘heresies’ is a bit strong, but HPC in the cloud, even for academics, is a fast-changing domain that’s increasingly governed by a new mindset, says Tim Carroll, head of ecosystem development and sales at Cycle Computing, an early pioneer in HPC cloud orchestration and provisioning software. The orthodoxy of the past – an emphatic focus on speeds and feeds, if you will – is being erased by changing researcher attitudes and the advancing capabilities of public (AWS, Microsoft, Google et al.) and private (Penguin, et al.) clouds.

Maybe this isn’t a revelation in enterprise settings where cost and time-to-market usually trump fascination with leading edge technology. True enough, agrees Carroll, but the maturing cloud infrastructure’s ability to handle the majority of science workflows – from simple Monte Carlo simulations to many demanding deep learning and GPU-accelerated workloads – is not only boosting enterprise HPC use, but also catching the attention of government and academic researchers. The job logjam (and hidden costs) when using institutional and NSF resources is prompting researchers to seek ways to avoid long queues, speed time-to-result, exercise closer control over their work and (potentially) trim costs, he says.

If all of that sounds like a good marketing pitch, well Carroll is after all in sales. No matter, he is also a long-time industry veteran who has watched the cloud’s evolution for years and has played a role in mainstreaming HPC, notably including seven years at Dell (first as senior manager HPC and later executive director emerging enterprise), before joining Cycle in 2014.

As a provider of a software platform that links HPC users to clouds, Cycle has a front row seat on changing HPC cloud user demographics and attitudes as well as cloud provider strengths and weaknesses. In this interview with HPCwire, Carroll discusses market and technology dynamics shaping HPC use in the cloud. Technology is no longer the dominant driver, he says. See if you agree with Carroll’s survey of the changing cloud landscape.

HPCwire: The democratization of HPC has been bandied about for quite awhile with the cloud portrayed as a critical element. There’s also a fair amount of argument around how much of the new HPC really is HPC. Let’s start at the top. How is cloud changing HPC and why is there so much debate over it?

Tim Carroll: Running HPC in the cloud runs antithetical to how most people were brought up in what was essentially an infrastructure centric world. Most of what you did [with] HPC was improve your ability to break through performance ceilings or to handle corners cases that were not traditional enterprise problems; so it was an industry that prided itself on breakthrough performance and corner cases. That was the mindset.

What HPC in the cloud is saying is “All of the HPC people who for years have been saying how big this industry is going to grow were exactly right, but not $25B being spent by people worrying about limits and corner cases. A healthy part of the growth came from people who didn’t care about anything but getting their work done. Some people still care about the traditional definition, but I would say there are a whole bunch of people who don’t even define it, they just see a way to do things that they couldn’t do five years ago or ten years ago.

HPCwire: So are the new users not really running HPC workloads and has the HPC definition changed?

Carroll: HPC workloads are always changing and perhaps the definition of the HPC along with it, but I think what’s really happening is the customer demographics are changing. It’s a customer demographic defined not by the software or the system, but the answer. When you ask someone in the research environment what their job is, they say I’m a geneticist or I am a computational chemist. Speak with an industrial engineer and they describe themselves as, no surprise, an industrial engineer. No one describes themselves as an “HPCer.” They all say I‘ve got a job to do and I’ve got to get it done in a certain amount of time at a certain price point. Their priority is the work.

I think what we did at Dell (now Dell EMC) was a huge step towards democratizing HPC. The attitude was that TOP500 was not the measure of success. Our goal very early on was to deliver more compute to academic researchers than another vendor. We did not strive for style points or the number of flops of any one particular system but we were determined to enable more scientists using more Dell flops than anybody else. That was our strategy and Dell was very successful with it.

HPCwire: That sounds a little too easy, as if they don’t need to know any or at least much computational technology. It’s clear systems vendors are racing to create easier-to-use machines and efforts like OpenHPC are making progress in creating a reference HPC stack. What do users need to know?

Carroll: Users and researchers absolutely need to understand the capabilities of their software and what can they actually do relative to the problem they need to solve, but they should not be required to know much more than that. For the last 20 years engineers and researchers defined the size of the problem they could tackle by the resources they knew they could get access. So if I know I have only got a 40-node cluster, what do I do? I start sizing my problems to fit on my cluster. Self-limiting happened unconsciously. But it doesn’t matter; the net effect was an artificial cap on growth.

So today, we’re not saying get rid of that 40-node cluster and make it bigger, but give people the choice to go bigger. Today, an engineer should be able to go to their boss and say, “I think I can deliver this research four months ahead of schedule if I have the ability to access 60 million core hours over a two week period and it’s going to cost – I am just making up numbers – $100,000.” Then the engineer and her boss go to the line of business and see if they want to come up with opex that will cover that and pull in their schedule by three months. Cloud gives people and organizations choice.

HPCwire: Stepping away from the enterprise for a moment, what’s the value proposition for academic and government researchers many of whom are very well versed indeed in HPC? Aren’t they simply likely to use internal resources or NSF cyberinfrastructure as opposed to the public cloud?

Carroll: The academic portion is really interesting because of how important the funding models are and the rules set by funding agencies. Because of that, it’s not always obvious if cloud is even an option. It also depends how the individual institutions charge for the other pieces [of a cloud deployment] that are being done. Often there is overhead and so it doesn’t matter how cost effective the cloud is because by the time it gets to the researcher, the landed cost to them is going to be prohibitive.

As a result, cloud for academic HPC has been murky for the last couple of years. People aren’t ready to get there yet. Jetstream was a step in the right direction (NSF-funded initiative) but I’m wondering if anyone put themselves in the shoes of users, big and small, to judge how that experience compares to the public cloud providers.

The cloud thing is going to be here this year, and next year, and many years after. And guess what there’s also going to be a refresh cycle on internal hardware next year and a refresh cycle the year after. People are going to have to get more and more granular in their justification for deploying in their internal infrastructure versus using public cloud. And I am not saying that’s an either or proposition. But if the demand for compute is growing at 50 percent per year and budgets are going up a lot less, how are you going to fill that gap providing the researcher what they need to get their jobs done. What is the value proposition of longer job queues?

How can academia or the funding agencies not embrace what is arguably the fastest moving, innovating, cost-effective platform in order to fill the compute demand gap. Cloud is just one more tool, but if one views it as the Trojan Horse to get inside academia eliminate infrastructure, that is just wrong. Cloud is going to get its portion of the overall market where it makes sense for certain workloads, but not necessarily entire segments. Embrace it.

HPCwire: What’s been the Cycle experience in dealing with the academic community?

Carroll: I am still somewhat surprised at the amount of pushback I get from the academic community based on anecdotal information – the number of people who talk about what can and can’t be done although they haven’t tried. And there are so many people at the public cloud providers who would love to help them. Who knows, it may work out that they run the workload to see how much it would cost and the data says it is still twice as expensive as [internally]. That’s great, now we have a hard data point rather than something anecdotal.

One of the great things cloud will do for academia is to clear the decks for people who are truly building specialized infrastructure to solve really hard problems. What’s typically happened is that institutions had to support a breadth of researchers and were faced with the challenge solving diverse needs from a demanding community. The result was commodity clusters became the best middle ground; good enough for the middle but not really what the high and the low needed. In trying to serve a diverse market with a single architecture, few people got exactly what their research required. What you are going to see is that bell curve is going to get turned upside down and centers are going to reallocate capex to specialized systems and run high throughput workloads on public cloud.

I should note that the major cloud providers all have enormous respect for the HPC market segment and appreciate the fact that the average customer at the high end probably consumes ten to several hundred times the compute of a typical enterprise customer. They are all staffing up with very talented people and are eager to collaborate with academia to deliver solutions to them.

HPCwire: What will be the big driver of cloud computing in academic research centers, beyond NSF resources I mean?

Carroll: In the last ten years universities have become far more competitive as far as attracting the right researchers. It used to be that every new researcher got his or her cluster in a startup package and that model is flat-out unsustainable. But it’s a small enough community that researchers will quickly hear when the word is “ABC University has a great system and their researchers have no queue times, with no workload limits.” Who cares where the compute is performed, the university will have generated a reputation that if you’re a researcher there, you just get what you need to get the job done. Competition for talent is going to drive larger cloud adoption in academia.

It can also be powerful for individual researchers working on small projects. There’s a professor who reached out to us who wanted to include [cloud computing] in her class as part of her teaching and doing real science. She wanted to start the job when the semester began and have it finish by the time it ended. We said, how about if instead of taking four months like you thought, we knock it down to a couple of days. It is not grant based research but the cost fit within her discretionary budget. So she is not doing it as an academic exercise. This is a piece of science that would not be done were it not for this. And it is part of the teaching.

HPCwire: How do you characterize the cloud providers and how does Cycle fit in?

Carroll: We (Cycle) are a software platform that gives people the ability to run their workloads under their control on whichever cloud is best for them. It is not a SaaS model. Users can still protect their corporate IP, with their existing workload, and run multiple workloads for multiple users across multiple clouds from a single control point. We fit in with the cloud providers by helping them and their users do what they do best.

My experience is that customers are not looking for “cloud”; they have a problem and a deadline and they are just trying to figure out how can they run workloads securely and cost effectively that can’t get run today on their internal infrastructure. If I came and said it’s the public cloud, that would be ok. Private cloud, ok. If I said we would pull a trailer stuffed with servers to their building, they’d say ok. They will make their choice based on how much it costs; is it secure, how much work is required to get started and keep it running. It just so happens that the winner is increasingly public cloud.

Back to your earlier question about change within HPC. Cloud is not causing infrastructure to disappear, it is causing labels to disappear. Customers who have been early adopters are now on their sixth or eighth or tenth workload and are starting to get into workloads that are considered “traditional HPC.” But they did not label the first workloads as “non-HPC.” They just view them as compute intensive applications and don’t care whether it is called HPC or something else.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ANL Special Colloquium on The Future of Computing

May 19, 2022

There are, of course, a myriad of ideas regarding computing’s future. At yesterday’s Argonne National Laboratory’s Director’s Special Colloquium, The Future of Computing, guest speaker Sadasivan Shankar, did his best to convince the audience that the high-energy cost of the current computing paradigm – not (just) economic cost; we’re talking entropy here – is fundamentally undermining computing’s progress such that... Read more…

What’s New in HPC Research: Air Pollution Prediction, nOS-V, cuHARM, Quantum Ray Tracing & More

May 19, 2022

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign European computing: its first European factory, housed in the C Read more…

Hyperion Study Tracks Rise and Impact of Linux Supercomputers

May 17, 2022

That supercomputers produce impactful, lasting value is a basic tenet among the HPC community. To make the point more formally, Hyperion Research has issued a new report, The Economic and Societal Benefits of Linux Super Read more…

ECP Director Doug Kothe Named ORNL Associate Laboratory Director

May 16, 2022

The Department of Energy's Oak Ridge National Laboratory (ORNL) has selected Doug Kothe to be the next Associate Laboratory Director for its Computing and Computational Sciences Directorate (CCSD), HPCwire has learned. Kothe will fill the vacancy created by the retirement of Jeff Nichols, whose last day is July 1. Kothe will transition into the position on June 6. As director of the United States' Exascale Computing Project... Read more…

AWS Solution Channel

shutterstock 1103121086

Encoding workflow dependencies in AWS Batch

Most users of HPC or Batch systems need to analyze data with multiple operations to get meaningful results. That’s really driven by the nature of scientific research or engineering processes – it’s rare that a single task generates the insight you need. Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

ANL Special Colloquium on The Future of Computing

May 19, 2022

There are, of course, a myriad of ideas regarding computing’s future. At yesterday’s Argonne National Laboratory’s Director’s Special Colloquium, The Future of Computing, guest speaker Sadasivan Shankar, did his best to convince the audience that the high-energy cost of the current computing paradigm – not (just) economic cost; we’re talking entropy here – is fundamentally undermining computing’s progress such that... Read more…

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign Eur Read more…

ECP Director Doug Kothe Named ORNL Associate Laboratory Director

May 16, 2022

The Department of Energy's Oak Ridge National Laboratory (ORNL) has selected Doug Kothe to be the next Associate Laboratory Director for its Computing and Computational Sciences Directorate (CCSD), HPCwire has learned. Kothe will fill the vacancy created by the retirement of Jeff Nichols, whose last day is July 1. Kothe will transition into the position on June 6. As director of the United States' Exascale Computing Project... Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Per Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Intel Extends IPU Roadmap Through 2026

May 10, 2022

Intel is extending its roadmap for infrastructure processors through 2026, the company said at its Vision conference being held in Grapevine, Texas. The company's IPUs (infrastructure processing units) are megachips that are designed to improve datacenter efficiency by offloading functions such as networking control, storage management and security that were traditionally... Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire