Stathis Papaefstathiou Takes the R&D Reins at Cray

By Tiffany Trader

January 26, 2017

Earlier this month, Cray announced that tech veteran Stathis Papaefstathiou had joined the ranks of the iconic supercomputing company. As senior vice president of R&D, Papaefstathiou will be responsible for leading the software and hardware engineering efforts for all of Cray’s research and development projects. He is replacing Peg Williams who is retiring after more than a decade with Cray, but will be staying on in a transition period for a few months.

Papaefstathiou’s tenure in technical computing covers a 30-year span. Most recently, he was the SVP of engineering at the Aerohive Networks, where he led product development for a portfolio that includes network hardware, embedded operating systems, cloud-enabled network management solutions, big data analytics, DevOps and mobile applications. Previously, he spent two years leading cloud development efforts at F5 Networks and more than six years at Microsoft, starting as a computer science researcher before being promoted to general manager in charge of robotics.

HPCwire spoke with Papaefstathiou to get a sense of how his enterprise and cloud background will be leveraged at Cray as well has his larger vision and execution strategy.

HPCwire: Stathis, please introduce yourself and tell us about your background and how you came to this position.

Papaefstathiou: My background originally was in the HPC space. In the 90s I worked in a business unit as a post doc and researcher in HPC. It was a very exciting time then in HPC because there were many different architectures and technologies. There was also a lot of optimism about the future so people were trying to create single solutions that would solve all types of problems. I had the opportunity to work with the Cray YMP and [another Cray system]. My work primarily was to understand how to model the architectures, the hardware architecture and describe applications in a way that the customers of the technology could match best their application with their appropriate hardware architecture.

As I mentioned, in the 90s there were a lot of different types of supercomputers, from the SIMD connection machine to massively parallel computers to shared memory computers and so on. So customers needed to understand that before they made a commitment to a certain model that their application would run well. So the various agencies were funding research in order to build these kind of predictive systems.

For me Cray is obviously an iconic company. It’s a great honor after working in the HPC community to have the opportunity to work for Cray. It’s a very interesting industry because you always have to fight with the trends of commoditization. You always have to be on the bleeding edge of building new technologies. This is something extremely exciting for an engineer, so having this opportunity to be working always on the latest technology you don’t have the opportunity to do this in many places.

Finally for Cray, I believe that the last few years the company has embarked on this journey in going beyond the traditional HPC market and expanding and I think this is a very promising direction, but at the same time it’s very exciting, because it’s an inflection point for the company to have contribution there.

HPCwire: I understand you started out in HPC, but your most recent roles were very much in the enterprise datacenter/cloud realm as opposed to the traditional HPC space – and in the last couple years, Cray has really been promoting the convergence of supercomputing and big data.

Papaefstathiou: There is definitely convergence of technologies between enterprise cloud and HPC. I think one of the things that was sort of profound to me was that in my previous role I was the SVP of engineering for Aerohat Networks and this is a company that is building hardware for the edge of the network but one of the differentiators against the market is that it collects data from this networking infrastructure in order to create business intelligence analytics as to how the network is being used but also how this data can contribute to the bottom line of the business. For example if you are a retail company, you may want to know what is the traffic that you have in your different physical stores or where the customer is spending more of their time within your store. So this is a type of data analytics that Aerohat is working on.

So part of my role was to build the solution from the ground up – this big data analytics solution. Of course we were working in the public cloud like most companies start, and I realized a couple of things that were not obvious to me when we built the solution. The first one was that actually building the solution – this big data real-time solution with pretty substantial scale – it was hard to do, especially if you take into consideration some of the constraints or characteristics of the cloud architecture, things like you don’t have guarantees in latency, that you need to build a solution that has to be designed for fault tolerance from the ground up because you never know when you’re going to have a fault in the resources that you’re using in the cloud. So it was a very painful process of building the solution. The second thing that was sort of interesting is that at a certain scale of this solution, the cost benefit of using the public cloud changes. One of the things that I find very exciting about the work that Cray is doing in the analytics space is that there is a class of problem, in terms of scale and complexity, where Cray supercomputing might be a better solution than public cloud. So while at the same time we have the convergence of the technologies, we do have differentiation in the supercomputing space for the big data analytics and machine learning solutions.

HPCwire: What are the products/technologies your teams will be working on in 2017?

Papaefstathiou: The first thing is getting into the exascale phase. We are working toward the next-generation of supercomputing. What’s interesting is in addition to the performance aspect, which is very important here, we have gained in the last few years a lot of experience building solutions for broad range of workloads, so already today we have our cluster line, an analytics line with Urika, and of course a supercomputing line. As we move forward, it’s about creating a lego model where we can take and combine technologies to support different use cases at different scale, using the same stack of technology. We have already have started doing this in 2016, for example Urika GX is coming with Aries network, so we combine our supercomputing technology with our cluster technology and we build a use case. So we already have started doing that but now we’re thinking more and more about how to easily be able to create this type of solution in a much more iterative and organized way.

I do believe that more and more of these supercomputing solutions will benefit smaller companies that are now doing analytics and machine learning, and they’re looking for the right type of computation platforms to solve these problems.

HPCwire: What is your interest in containers?

Papaefstathiou: Containers are a very useful tool for us. One of the things which is expensive in the supercomputing world is to update the system with a new type of new software stack on top of the hardware. Containers provide us a way to easily make upgrades to the system in a very lightweight manner without having to make any change in the operating system, without having to impact the other parts of the software stack. So if, for example, you want to change your analytics solution and upgrade to the latest version, it’s very easy to just update the container in the compute node instead of having to bring up nodes from the ground up and update the whole stack. So that’s one use of the containers, obviously as we move forward, we can use containers for other types of use cases, for example multitenancy, which is a very good scenario because we are going to have multiple workloads running on the big systems so being able to use containers as mechanism to isolate compute nodes amongst the different workloads is an interesting application. And finally containers can be used so you can build your application using our programming tools, package it in a container and be able to send to supercomputing nodes, it becomes a way to democratize the development of the code because you can do it in a very contained way; you can package in a contained way and send to the supercomputer to run it.

HPCwire: Thoughts on burst buffers and what will see from Cray in that area?

Papaefstathiou: We continue to collaborate with NERSC on that, as well as containers. DataWarp is a very important technology for us and I think it’s going to be a great tool for us to get to exascale because moving data in and out of the system from the compute nodes to the storage at the scale of exascale really becomes a major problem so having Datawarp and the burst buffer architecture there in between these two layers of the system will be a very critical advantage that we have at Cray to solve these workloads at scale.

HPCwire: What are your major impressions of the state of HPC today? Trends, inflection points, future directions?

Papaefstathiou: I think that deep learning is a use case that can benefit from the use of HPC technologies. The work we did with Microsoft a few months back with the cognitive libraries, porting them to Cray and being able to get a lot of benefit there both scale and time to execution is an example of how supercomputing can be used there. Also the plethora of processor architectures available to our customers now, the GPUs, the manycore/multicore systems, Xeon Phi and the traditional Intel processors – these can be matched to specific workload requirements. I was telling you before about the this lego model where you can take different types of technologies and put them in the same system and customize effectively the system for your workload, I think we will see more and more of this happening.

I do believe that the ability of HPC technologies within the cloud front end – that’s also another exciting possibility because effectively we will democratize the use of HPC technologies for a broader audience. Now there is a course bar for somebody to get into this space. With cloud there is a possibility with the cloud providers hosting high-performance computers, that might be a way for the broader community to access this technology.

HPCwire: Interesting to hear you say that because earlier you mentioned how some of the people using cloud and cloud-like solutions could benefit from a more traditional product but the converse is also true.

Papaefstathiou: Absolutely and I’ll give you an obvious example. One of the problems we will have in exascale, is doing system management at huge scale, being able to collect data — monitoring data, performance data — from tens of thousands of nodes, and being able to manage them and analyze them, and create troubleshooting optimization based on that — it’s a very hard problem. Already folks are doing this in the cloud community. Now there are some differences there, some adjustment has to take place, but this example of system management technology that can be used in the cloud can also be applied with some adjustments around supercomputing.

HPCwire: Speaking of exascale, what is your vision for exascale at Cray and can you speak to how exascale benefits will accrue to commercial HPC users?

Papaefstathiou: Exascale is very interesting. Because of the way they have organized the program [the US Exascale Computing Project], exascale is not about writing a benchmark and getting exascale performance; it’s about getting applications to run with exascale performance. This means that the system, the application and the whole stack, has to be thought of very holistically and solve a lot of hard problems in order to get to this level. Things for example that in the past might not have been in the critical path of performance of applications or the system, now become critical. We’re going to have to address problems that we didn’t have to this extent in the past and I mentioned two of them. One is system management, which in the past was an interesting problem, but now being able to collect all this data, being able to push the OS image to so many nodes, being able to do this efficiently and being able to upgrade the system efficiently — that will become a critical path in creating exascale systems. We talked about Datawarp — thinking about how to bring in data in and out of the exascale system, these will be very hard problems that have to be solved in order to meet this goal.

One of the things we have started doing is working on applying the very high-end technology we are building for the big supercomputers to a broader market and I gave the Urika GX example, where we took the Aries network that was designed for the supercomputer and put it into much smaller form factor that can benefit a much broader community of enterprises, for example, that are doing analytics — I think there is going to be an opportunity for some of these technologies to go downstream toward this broader market as we move forward and we’re thinking about this and we already have products in the market and will continue doing this in the future.

HPCwire: Are you actively focusing on meeting the requirements for the big Aurora supercomputer right now — is that one of the main things on your list?

Papaefstathiou: Yes, this is one of the drivers for getting to the exascale goal, absolutely. We do this often. We have these projects that are sort of the pilots in order to solve some of these hard problems to get to this goal. We’re working very hard on Aurora at this moment.

HPCwire: What else can you tell me about your larger vision for this position and some of the greater company goals you’ll be working to achieve?

Papaefstathiou: Peg Williams is my predecessor and she did a fantastic job building a very high performance team here. One of the things I realized when I joined was that the baseline of the team is very high. We do have some new dynamics that are happening because we have a really broad product portfolio today. We support a lot of technologies. We have new products that we are introducing in the market, some of them are beyond traditional HPC, for example our Urika analytics product line. Finally we have this convergence of technologies. Some of the technologies that are used in the cloud or in enterprise now can be used in HPC. This means from the team perspective while in the past, we were working with a traditional HPC cadence in terms of execution, now we need to go and mimic in some occasions some of the dynamic nature of the cloud and enterprise side. This is reflected both in terms of engineering systems and engineering process. So we are going to also see convergence in terms of the engineering process and the organization approach in order to capture this requirement.

The other area is that the one thing that it’s not well known in the engineering community is how Cray products are really impactful in solving some of the hard problems of the world in basic science, in the different enterprises and so on. I think there is a great opportunity for us to create the messages for this community beyond traditional HPC through our communication of our mission, through creating excitement around the technologies that we’re developing and creating momentum behind HPC in general and Cray. And for that purpose, we need to provide the right environment both for our employees and for the friends of the company, so there really is also an opportunity there for us to get outside of traditional HPC and approach the broader engineering community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This