ANSYS Adds Cycle Orchestration for Enterprise Cloud HPC

By Doug Black

February 4, 2017

The waiting is the hardest part.

When design engineers need to run complex simulations, too often they find that the HPC resources required for those workloads are already being used. The problem: most on-prem data centers are provisioned for steady-state, not high-demand, needs. When demand increases and HPC resources aren’t available, the engineer puts in a request with the job scheduler. Here, to paraphrase the opening of “Casablanca,” the fortunate ones, through money, or influence, or luck, might obtain access to HPC resources. But the others wait in scheduling limbo. And wait, and wait, and wait….

Now ANSYS, the popular CAE software vendor whose users increasingly turn to HPC for complex simulation workloads, has partnered with Cycle Computing and its CycleCloud software to leverage dynamic cloud capacity and auto-scaling. CycleCloud will provide HPC orchestration for ANSYS’s Enterprise Cloud HPC offering, an engineering simulation platform delivered on Amazon Web Services. CycleCloud enables cloud migration of CAE workloads requiring HPC, including storage and data management and access to resources for interactive and batch execution that scales on demand.

According to ANSYS, more customers are turning to the cloud as the locale for the full simulation and design life cycle.

“We have periods when we have need for many more cores than our data centers can manage,” Judd Kaiser, ANSYS cloud computing program manager, said. “Or we’re moving to increasingly variable workloads and were looking to cloud now as a possible solution. On other end, we have customers who are growing into HPC, who’d like to take advantage of HPC, but building a data center isn’t their core business, so they want to know how they can use cloud to their advantage.”

Cycle addresses both needs, he said.

“We didn’t have much experience in provisioning cloud resources and managing HPC on cloud infrastructures, and that’s what Cycle brought to the table,” he said. “ANSYS Enterprise Cloud, is intended to be a virtual simulation data center, it just happens to be backed on public cloud hardware. It means we can provision for a customer and they can have it up and running next week, serving the needs of dozens of engineers running very large workloads. If that same customer asked us for a recommendation of what we need for a data center, from specs for the system, to ordering the hardware, to rack and stack and installing software and rolling it out to the engineers, that typically takes many months.”

CycleCloud is intended to ensure optimal AWS Spot instance usage and that appropriate resources are used for the right amount of time in the ANSYS Enterprise Cloud. With CycleCloud handing auto-scaling, he explained, “the engineer submits a job to the cluster…and the cluster scales up to meet the demands of the job. So resources are provisioned specifically to serve the needs of that individual job, the job runs almost immediately, and then when it’s complete those resources are decommissioned.”

Keith said there already is some misunderstanding that the combined ANSYS-Cycle offering targets burst-to-the-cloud demand situations.

“It’s more than that,” he said. “People imagine burst capabilities…, it sounds great. They think: ‘I have an on-prem job, I’ll submit it to the cloud and when it’s done I’ll bring it back.’ But therein lies the problem: Bringing it back.”

Not only do ANSYS jobs use a significant amount of compute resources, he said, but once that job is complete the resulting data set can be extremely large. “So if the idea is to bring that data set back on prem and finish the simulation process there…, for most of our software that’s done interactively. You get the data, you load it onto a graphical workstation, you slice and dice it…and extract the useful information. That last part is graphical in nature. So if your vision is to launch to the cloud for the HPC and then bring the results back, you’ve got a data transfer problem. Our results files are routinely huge.”

The answer, he said, it to conduct the entire simulation process in the cloud. “Without moving the data after it’s computed, you spin up a graphical workstation in the cloud and do your post processing with the data in place, still in the cloud. You’re using some sort of thin client locally to interact with the software, but it’s all physically running in the cloud.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This