Van Andel Research Optimizes HPC Pipeline with DDN

By John Russell

February 7, 2017

For more than a decade the swelling output from life sciences experimental instruments has been overwhelming research computing infrastructures intended to support them. DNA sequencers were the first – instrument capacities seemed to jump monthly. Today it’s the cryo electron microscope – some of them 13TB a day beasts. Even a well-planned brand-new HPC environment can find itself underpowered by the time it is switched on.

A good example of the challenge and nimbleness required to cope is Van Andel Research Institute’s (VARI) initiative to build a new HPC environment to support its work on epigenetic, genetic, molecular and cellular origins of cancer – all of which require substantial computational resources. VARI (Grand Rapids, Michigan) is part of Van Andel Institute.

With the HPC building project largely finished, Zack Ramjan, research computing architect for VARI, recalled wryly, “About 10 months ago, we decided we were going to get into the business of cryo-EM. That was news to me and maybe news to many of us here. That suite of three instruments has huge data needs. So we went back and luckily the design that we had was rock solid that’s where we kind of started adding.” He’d been recruited from USC in late 2014 specifically to lead the effort to create an HPC environment for scientific computing.

Titan Krios

The response was to re-examine the storage system, which would absorb the bulk of the new workload strain, and deploy expanded DDN storage – GS7K appliances and WOS – to cope with demand expected from three new cryo-EMs (FEI Titan Krios, FEI Arctica, and smaller instrument for QC). Taken together, the original HPC building effort and changes made later on the fly showcase the rapidly changing choices often confronted by “smaller” research institutions mounting HPC overhauls.

Working with DDN, Silicon Mechanics, and Bright Computing, VARI developed a modest-size hybrid cluster-cloud environment with roughly 2,000 cores, 2.2 petabytes of storage, and 40Gb Ethernet throughout. Major components include private-cloud hosting with OpenStack, Big Data analytics, petabyte-scale distributed/parallel storage, and cluster/grid computing. The work required close collaboration with VARI researcher – roughly 32 groups of varying size – to design and support computing workloads in genomics, epigenetics, next-gen sequencing, molecular-dynamics, bioinformatics and biostatistics

As for many similar-sized institutions, bringing order to the storage architecture was a major challenge. Without centralized HPC resources in-house, individual investigators (and groups) tend to go it alone creating a chaotic disconnected storage landscape.

“These pools of storage were scattered and independent. They were small, not scalable, and intended for specific use cases,” he recalled. “I wanted to replace all that with a single solution that could support HPC because it’s not just about the storage capacity; we also need to support access to that data in a high performance way, [for] moving data very fast, in parallel, to many machines at once.”

A wide range of instruments – sequencers and cryo-EM are just two – required access to storage. Workflows were mixed. Data from external collaborators and other consortia were often brought in-house and had a way of “multiplying after being worked on.” Ramjan’s plan was to centralize and simplify. Data would stream directly from instruments to storage. Investigator created data would likewise be captured in one place.

“There’s no analysis storage and instrument storage, it’s all one storage. The data goes straight to a DDN device. My design was to remove copy and duplications. It comes in one time and users are working on it. It’s a tiered approach. So data goes straight into the highest performing tier, from there, there is no more movement.” DDN GS7K devices comprise this higher performing tier.

As the data ‘cools’ and investigators move to new projects, “We may have to retain the data due to obligations or the user wants to keep it around; then we don’t want to keep ‘cold’ data on our highest performing device. Behind the scenes this data is automatically moved to a slower and more economical tier,” said Ramjan. This is the WOS controlled tier. It’s also where much of the cryo-EM data ends up after initial processing.

DDN GRIDScaler-GS7K

Physically there are actually four places the data can be although the user only sees one, emphasized Ramjan. “It’s either on our mirrored pool – we have two GS7Ks, one either side of the building for disaster recovery in terms of a flood or tornado something like that. If the data doesn’t need to have that level of protection it will be on one of the GSK7s or it will be replicated on WOS. There are two WOS devices also spread out in the same way so the data could be sitting mirrored, replicated, on either side. The lowest level of protection would be a single WOS device.”

“Primary data being – data we’re making here, it came of a machine, or there’s no recreating it because the sample is destroyed – we consider that worthy of full replication sitting in two places on the two GS7Ks. If the user lets it cool down, it will go to the two WOS devices and inside those devices is also a RAID so you can say the replication factor is 2-plus. We maintain that for our instrument data.”

Data movement is widely controlled by policy capabilities in the file system. Automating data flow from instruments in this way, for example, greatly reduces steps and admin requirements. Choosing an effective parallel file system is a key component in such a scheme and reduces the need for additional tools.

“There are really only three options for a very high performance file system,” said Ramjan, “GPFS (now Spectrum Scale from IBM), Lustre, and OneFS (Dell DMC/Isilon).” OneFS, said Ramjan, which VARI had earlier experience with, was cost-prohibitive compared to the other choices. He also thinks Lustre is more difficult to work than GPFS and lacked key features.

“We had Isilon before. I won’t say anything bad about it but pricewise, but it was pretty painful. I spent a lot of time exploring both of the others. Lustre is by no means a bad option, but for us the right fit was GPFS. I needed something that was more appliance based. You know we’re not the size of the university of Michigan or USC or a massive institute with 100 guys in the IT department ready to work on this. We wanted to bring something in quick that would be well supported.

“I felt Lustre would require more labor and time than I was willing to spend and it didn’t have some of the things GPFS does like tiering and rule-based tiering and easier expansion. DDN could equally have sold us a Lustre GSK too if we wanted,” he said.

Zack Ramjan-VARI

On balance, “Deploying DDN’s end-to-end storage solution has allowed us to elevate the standard of protection, increase compliance and push boundaries on a single, highly scalable storage platform,” said Ramjan. “We’ve also saved hundreds of thousands of dollars by centralizing the storage of our data-intensive research and a dozen data-hungry scientific instruments on DDN.”

Interesting side note: “The funny things was the vendors of the microscopes didn’t know anything about IT so they couldn’t actually tell us concretely what we’d need. For example, would 10Gig network be sufficient? They couldn’t answer of those questions and they still can’t unfortunately. It put me in quite a bind. I ended up talking with George Vacek at DDN and he pointed me towards three other cryo-EM users also using DDN, which turned out to be a great source of support.”

Storage, of course is only part of the HPC puzzle. Ramjan was replacing a systems that had more in common with traditional corporate enterprise systems than with scientific computing platforms. Starting from scratch, he had a fair degree of freedom in selecting the architecture and choosing components. He says going with a hybrid cluster/cloud architecture was the correct choice.

Silicon Mechanics handled the heavy lifting with regard to hardware and integration. The Bright Computing provisioning and management platform was used. There are also heterogeneous computing elements although accelerators were not an early priority.

“The genomics stuff – sequencing, genotyping, etc. – that we’ve been doing doesn’t benefit much from GPUs, but the imaging analysis we are getting into does. So we do have a mix of nodes, some with accelerators, although they are all very similar at the main processer. The nodes all have Intel Xeons with a lot of memory, fast SSD, and fast network connections. We have some [NVIDIA] K80s and are bringing in some of the new GTX 1080s. I’m pretty excited about the 1080s because they are a quarter of the cost and in our use case seem to be performing just as well if not a little but better,” said Ramjan.

“I had the option of using InfiniBand, but said listen we know Ethernet, we can do Ethernet in a high performance way, let’s just stick with it at this time. Now there’s up to a 100 Gig Ethernet.”

In going with the hybrid HPC cluster/cloud route, Ramjan evaluated public cloud options. “I wanted to be sure it made sense to do it in-house (OpenStack) when I could just put it in Google’s cloud or Amazon or Microsoft. We ran the numbers and I think cloud computing is great for someone doing a little bit of computing a few times year, but not for us.” It’s not the cost of cycles; they are cheap enough. It’s data movement and storage charges.

Cloud bursting to the public cloud is an open question for Ramjan. He is already working with Bright Computing on a system environment update, expected to go live in March, that will have cloud bursting capability. He wonders how much it will be used.

“It’s good for rare cases. Still you have to balance that against just acquiring more nodes. The data movement in and out of the cloud is where they get you on price. With a small batch I could see it being economical but I have an instrument here that can produce 13 TB a day – moving that is going to be very expensive. We have people doing molecular dynamics, low data volume, low storage volume, but high CPU requirements. But even then latency is a factor.”

System adoption has been faster than expected. “I thought utilization would ramp up slowly, but [already] we’re sitting at 80 percent utilization on a constant basis often at 100 percent. It surprised me how fast and how hungry our investigators were for these resources. If you would have asked them beforehand ‘do you need this’ they probably would have said no.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances – including ones targeting HPC – at its AWS re:Invent 2022 Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire