Van Andel Research Optimizes HPC Pipeline with DDN

By John Russell

February 7, 2017

For more than a decade the swelling output from life sciences experimental instruments has been overwhelming research computing infrastructures intended to support them. DNA sequencers were the first – instrument capacities seemed to jump monthly. Today it’s the cryo electron microscope – some of them 13TB a day beasts. Even a well-planned brand-new HPC environment can find itself underpowered by the time it is switched on.

A good example of the challenge and nimbleness required to cope is Van Andel Research Institute’s (VARI) initiative to build a new HPC environment to support its work on epigenetic, genetic, molecular and cellular origins of cancer – all of which require substantial computational resources. VARI (Grand Rapids, Michigan) is part of Van Andel Institute.

With the HPC building project largely finished, Zack Ramjan, research computing architect for VARI, recalled wryly, “About 10 months ago, we decided we were going to get into the business of cryo-EM. That was news to me and maybe news to many of us here. That suite of three instruments has huge data needs. So we went back and luckily the design that we had was rock solid that’s where we kind of started adding.” He’d been recruited from USC in late 2014 specifically to lead the effort to create an HPC environment for scientific computing.

Titan Krios

The response was to re-examine the storage system, which would absorb the bulk of the new workload strain, and deploy expanded DDN storage – GS7K appliances and WOS – to cope with demand expected from three new cryo-EMs (FEI Titan Krios, FEI Arctica, and smaller instrument for QC). Taken together, the original HPC building effort and changes made later on the fly showcase the rapidly changing choices often confronted by “smaller” research institutions mounting HPC overhauls.

Working with DDN, Silicon Mechanics, and Bright Computing, VARI developed a modest-size hybrid cluster-cloud environment with roughly 2,000 cores, 2.2 petabytes of storage, and 40Gb Ethernet throughout. Major components include private-cloud hosting with OpenStack, Big Data analytics, petabyte-scale distributed/parallel storage, and cluster/grid computing. The work required close collaboration with VARI researcher – roughly 32 groups of varying size – to design and support computing workloads in genomics, epigenetics, next-gen sequencing, molecular-dynamics, bioinformatics and biostatistics

As for many similar-sized institutions, bringing order to the storage architecture was a major challenge. Without centralized HPC resources in-house, individual investigators (and groups) tend to go it alone creating a chaotic disconnected storage landscape.

“These pools of storage were scattered and independent. They were small, not scalable, and intended for specific use cases,” he recalled. “I wanted to replace all that with a single solution that could support HPC because it’s not just about the storage capacity; we also need to support access to that data in a high performance way, [for] moving data very fast, in parallel, to many machines at once.”

A wide range of instruments – sequencers and cryo-EM are just two – required access to storage. Workflows were mixed. Data from external collaborators and other consortia were often brought in-house and had a way of “multiplying after being worked on.” Ramjan’s plan was to centralize and simplify. Data would stream directly from instruments to storage. Investigator created data would likewise be captured in one place.

“There’s no analysis storage and instrument storage, it’s all one storage. The data goes straight to a DDN device. My design was to remove copy and duplications. It comes in one time and users are working on it. It’s a tiered approach. So data goes straight into the highest performing tier, from there, there is no more movement.” DDN GS7K devices comprise this higher performing tier.

As the data ‘cools’ and investigators move to new projects, “We may have to retain the data due to obligations or the user wants to keep it around; then we don’t want to keep ‘cold’ data on our highest performing device. Behind the scenes this data is automatically moved to a slower and more economical tier,” said Ramjan. This is the WOS controlled tier. It’s also where much of the cryo-EM data ends up after initial processing.

DDN GRIDScaler-GS7K

Physically there are actually four places the data can be although the user only sees one, emphasized Ramjan. “It’s either on our mirrored pool – we have two GS7Ks, one either side of the building for disaster recovery in terms of a flood or tornado something like that. If the data doesn’t need to have that level of protection it will be on one of the GSK7s or it will be replicated on WOS. There are two WOS devices also spread out in the same way so the data could be sitting mirrored, replicated, on either side. The lowest level of protection would be a single WOS device.”

“Primary data being – data we’re making here, it came of a machine, or there’s no recreating it because the sample is destroyed – we consider that worthy of full replication sitting in two places on the two GS7Ks. If the user lets it cool down, it will go to the two WOS devices and inside those devices is also a RAID so you can say the replication factor is 2-plus. We maintain that for our instrument data.”

Data movement is widely controlled by policy capabilities in the file system. Automating data flow from instruments in this way, for example, greatly reduces steps and admin requirements. Choosing an effective parallel file system is a key component in such a scheme and reduces the need for additional tools.

“There are really only three options for a very high performance file system,” said Ramjan, “GPFS (now Spectrum Scale from IBM), Lustre, and OneFS (Dell DMC/Isilon).” OneFS, said Ramjan, which VARI had earlier experience with, was cost-prohibitive compared to the other choices. He also thinks Lustre is more difficult to work than GPFS and lacked key features.

“We had Isilon before. I won’t say anything bad about it but pricewise, but it was pretty painful. I spent a lot of time exploring both of the others. Lustre is by no means a bad option, but for us the right fit was GPFS. I needed something that was more appliance based. You know we’re not the size of the university of Michigan or USC or a massive institute with 100 guys in the IT department ready to work on this. We wanted to bring something in quick that would be well supported.

“I felt Lustre would require more labor and time than I was willing to spend and it didn’t have some of the things GPFS does like tiering and rule-based tiering and easier expansion. DDN could equally have sold us a Lustre GSK too if we wanted,” he said.

Zack Ramjan-VARI

On balance, “Deploying DDN’s end-to-end storage solution has allowed us to elevate the standard of protection, increase compliance and push boundaries on a single, highly scalable storage platform,” said Ramjan. “We’ve also saved hundreds of thousands of dollars by centralizing the storage of our data-intensive research and a dozen data-hungry scientific instruments on DDN.”

Interesting side note: “The funny things was the vendors of the microscopes didn’t know anything about IT so they couldn’t actually tell us concretely what we’d need. For example, would 10Gig network be sufficient? They couldn’t answer of those questions and they still can’t unfortunately. It put me in quite a bind. I ended up talking with George Vacek at DDN and he pointed me towards three other cryo-EM users also using DDN, which turned out to be a great source of support.”

Storage, of course is only part of the HPC puzzle. Ramjan was replacing a systems that had more in common with traditional corporate enterprise systems than with scientific computing platforms. Starting from scratch, he had a fair degree of freedom in selecting the architecture and choosing components. He says going with a hybrid cluster/cloud architecture was the correct choice.

Silicon Mechanics handled the heavy lifting with regard to hardware and integration. The Bright Computing provisioning and management platform was used. There are also heterogeneous computing elements although accelerators were not an early priority.

“The genomics stuff – sequencing, genotyping, etc. – that we’ve been doing doesn’t benefit much from GPUs, but the imaging analysis we are getting into does. So we do have a mix of nodes, some with accelerators, although they are all very similar at the main processer. The nodes all have Intel Xeons with a lot of memory, fast SSD, and fast network connections. We have some [NVIDIA] K80s and are bringing in some of the new GTX 1080s. I’m pretty excited about the 1080s because they are a quarter of the cost and in our use case seem to be performing just as well if not a little but better,” said Ramjan.

“I had the option of using InfiniBand, but said listen we know Ethernet, we can do Ethernet in a high performance way, let’s just stick with it at this time. Now there’s up to a 100 Gig Ethernet.”

In going with the hybrid HPC cluster/cloud route, Ramjan evaluated public cloud options. “I wanted to be sure it made sense to do it in-house (OpenStack) when I could just put it in Google’s cloud or Amazon or Microsoft. We ran the numbers and I think cloud computing is great for someone doing a little bit of computing a few times year, but not for us.” It’s not the cost of cycles; they are cheap enough. It’s data movement and storage charges.

Cloud bursting to the public cloud is an open question for Ramjan. He is already working with Bright Computing on a system environment update, expected to go live in March, that will have cloud bursting capability. He wonders how much it will be used.

“It’s good for rare cases. Still you have to balance that against just acquiring more nodes. The data movement in and out of the cloud is where they get you on price. With a small batch I could see it being economical but I have an instrument here that can produce 13 TB a day – moving that is going to be very expensive. We have people doing molecular dynamics, low data volume, low storage volume, but high CPU requirements. But even then latency is a factor.”

System adoption has been faster than expected. “I thought utilization would ramp up slowly, but [already] we’re sitting at 80 percent utilization on a constant basis often at 100 percent. It surprised me how fast and how hungry our investigators were for these resources. If you would have asked them beforehand ‘do you need this’ they probably would have said no.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This