Van Andel Research Optimizes HPC Pipeline with DDN

By John Russell

February 7, 2017

For more than a decade the swelling output from life sciences experimental instruments has been overwhelming research computing infrastructures intended to support them. DNA sequencers were the first – instrument capacities seemed to jump monthly. Today it’s the cryo electron microscope – some of them 13TB a day beasts. Even a well-planned brand-new HPC environment can find itself underpowered by the time it is switched on.

A good example of the challenge and nimbleness required to cope is Van Andel Research Institute’s (VARI) initiative to build a new HPC environment to support its work on epigenetic, genetic, molecular and cellular origins of cancer – all of which require substantial computational resources. VARI (Grand Rapids, Michigan) is part of Van Andel Institute.

With the HPC building project largely finished, Zack Ramjan, research computing architect for VARI, recalled wryly, “About 10 months ago, we decided we were going to get into the business of cryo-EM. That was news to me and maybe news to many of us here. That suite of three instruments has huge data needs. So we went back and luckily the design that we had was rock solid that’s where we kind of started adding.” He’d been recruited from USC in late 2014 specifically to lead the effort to create an HPC environment for scientific computing.

Titan Krios

The response was to re-examine the storage system, which would absorb the bulk of the new workload strain, and deploy expanded DDN storage – GS7K appliances and WOS – to cope with demand expected from three new cryo-EMs (FEI Titan Krios, FEI Arctica, and smaller instrument for QC). Taken together, the original HPC building effort and changes made later on the fly showcase the rapidly changing choices often confronted by “smaller” research institutions mounting HPC overhauls.

Working with DDN, Silicon Mechanics, and Bright Computing, VARI developed a modest-size hybrid cluster-cloud environment with roughly 2,000 cores, 2.2 petabytes of storage, and 40Gb Ethernet throughout. Major components include private-cloud hosting with OpenStack, Big Data analytics, petabyte-scale distributed/parallel storage, and cluster/grid computing. The work required close collaboration with VARI researcher – roughly 32 groups of varying size – to design and support computing workloads in genomics, epigenetics, next-gen sequencing, molecular-dynamics, bioinformatics and biostatistics

As for many similar-sized institutions, bringing order to the storage architecture was a major challenge. Without centralized HPC resources in-house, individual investigators (and groups) tend to go it alone creating a chaotic disconnected storage landscape.

“These pools of storage were scattered and independent. They were small, not scalable, and intended for specific use cases,” he recalled. “I wanted to replace all that with a single solution that could support HPC because it’s not just about the storage capacity; we also need to support access to that data in a high performance way, [for] moving data very fast, in parallel, to many machines at once.”

A wide range of instruments – sequencers and cryo-EM are just two – required access to storage. Workflows were mixed. Data from external collaborators and other consortia were often brought in-house and had a way of “multiplying after being worked on.” Ramjan’s plan was to centralize and simplify. Data would stream directly from instruments to storage. Investigator created data would likewise be captured in one place.

“There’s no analysis storage and instrument storage, it’s all one storage. The data goes straight to a DDN device. My design was to remove copy and duplications. It comes in one time and users are working on it. It’s a tiered approach. So data goes straight into the highest performing tier, from there, there is no more movement.” DDN GS7K devices comprise this higher performing tier.

As the data ‘cools’ and investigators move to new projects, “We may have to retain the data due to obligations or the user wants to keep it around; then we don’t want to keep ‘cold’ data on our highest performing device. Behind the scenes this data is automatically moved to a slower and more economical tier,” said Ramjan. This is the WOS controlled tier. It’s also where much of the cryo-EM data ends up after initial processing.

DDN GRIDScaler-GS7K

Physically there are actually four places the data can be although the user only sees one, emphasized Ramjan. “It’s either on our mirrored pool – we have two GS7Ks, one either side of the building for disaster recovery in terms of a flood or tornado something like that. If the data doesn’t need to have that level of protection it will be on one of the GSK7s or it will be replicated on WOS. There are two WOS devices also spread out in the same way so the data could be sitting mirrored, replicated, on either side. The lowest level of protection would be a single WOS device.”

“Primary data being – data we’re making here, it came of a machine, or there’s no recreating it because the sample is destroyed – we consider that worthy of full replication sitting in two places on the two GS7Ks. If the user lets it cool down, it will go to the two WOS devices and inside those devices is also a RAID so you can say the replication factor is 2-plus. We maintain that for our instrument data.”

Data movement is widely controlled by policy capabilities in the file system. Automating data flow from instruments in this way, for example, greatly reduces steps and admin requirements. Choosing an effective parallel file system is a key component in such a scheme and reduces the need for additional tools.

“There are really only three options for a very high performance file system,” said Ramjan, “GPFS (now Spectrum Scale from IBM), Lustre, and OneFS (Dell DMC/Isilon).” OneFS, said Ramjan, which VARI had earlier experience with, was cost-prohibitive compared to the other choices. He also thinks Lustre is more difficult to work than GPFS and lacked key features.

“We had Isilon before. I won’t say anything bad about it but pricewise, but it was pretty painful. I spent a lot of time exploring both of the others. Lustre is by no means a bad option, but for us the right fit was GPFS. I needed something that was more appliance based. You know we’re not the size of the university of Michigan or USC or a massive institute with 100 guys in the IT department ready to work on this. We wanted to bring something in quick that would be well supported.

“I felt Lustre would require more labor and time than I was willing to spend and it didn’t have some of the things GPFS does like tiering and rule-based tiering and easier expansion. DDN could equally have sold us a Lustre GSK too if we wanted,” he said.

Zack Ramjan-VARI

On balance, “Deploying DDN’s end-to-end storage solution has allowed us to elevate the standard of protection, increase compliance and push boundaries on a single, highly scalable storage platform,” said Ramjan. “We’ve also saved hundreds of thousands of dollars by centralizing the storage of our data-intensive research and a dozen data-hungry scientific instruments on DDN.”

Interesting side note: “The funny things was the vendors of the microscopes didn’t know anything about IT so they couldn’t actually tell us concretely what we’d need. For example, would 10Gig network be sufficient? They couldn’t answer of those questions and they still can’t unfortunately. It put me in quite a bind. I ended up talking with George Vacek at DDN and he pointed me towards three other cryo-EM users also using DDN, which turned out to be a great source of support.”

Storage, of course is only part of the HPC puzzle. Ramjan was replacing a systems that had more in common with traditional corporate enterprise systems than with scientific computing platforms. Starting from scratch, he had a fair degree of freedom in selecting the architecture and choosing components. He says going with a hybrid cluster/cloud architecture was the correct choice.

Silicon Mechanics handled the heavy lifting with regard to hardware and integration. The Bright Computing provisioning and management platform was used. There are also heterogeneous computing elements although accelerators were not an early priority.

“The genomics stuff – sequencing, genotyping, etc. – that we’ve been doing doesn’t benefit much from GPUs, but the imaging analysis we are getting into does. So we do have a mix of nodes, some with accelerators, although they are all very similar at the main processer. The nodes all have Intel Xeons with a lot of memory, fast SSD, and fast network connections. We have some [NVIDIA] K80s and are bringing in some of the new GTX 1080s. I’m pretty excited about the 1080s because they are a quarter of the cost and in our use case seem to be performing just as well if not a little but better,” said Ramjan.

“I had the option of using InfiniBand, but said listen we know Ethernet, we can do Ethernet in a high performance way, let’s just stick with it at this time. Now there’s up to a 100 Gig Ethernet.”

In going with the hybrid HPC cluster/cloud route, Ramjan evaluated public cloud options. “I wanted to be sure it made sense to do it in-house (OpenStack) when I could just put it in Google’s cloud or Amazon or Microsoft. We ran the numbers and I think cloud computing is great for someone doing a little bit of computing a few times year, but not for us.” It’s not the cost of cycles; they are cheap enough. It’s data movement and storage charges.

Cloud bursting to the public cloud is an open question for Ramjan. He is already working with Bright Computing on a system environment update, expected to go live in March, that will have cloud bursting capability. He wonders how much it will be used.

“It’s good for rare cases. Still you have to balance that against just acquiring more nodes. The data movement in and out of the cloud is where they get you on price. With a small batch I could see it being economical but I have an instrument here that can produce 13 TB a day – moving that is going to be very expensive. We have people doing molecular dynamics, low data volume, low storage volume, but high CPU requirements. But even then latency is a factor.”

System adoption has been faster than expected. “I thought utilization would ramp up slowly, but [already] we’re sitting at 80 percent utilization on a constant basis often at 100 percent. It surprised me how fast and how hungry our investigators were for these resources. If you would have asked them beforehand ‘do you need this’ they probably would have said no.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This