HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

By Tiffany Trader

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” wrote mathematician Alfred Lord Whitehead in his 1911 text, “An Introduction to Mathematics.” The words presaged the rise of computing and automation that would characterize the 20th century and also serve nicely as the guiding principle of new University of Chicago startup Parallel Works.

Like Globus, a University of Chicago/Argonne project with shared roots, Parallel Works is helping to automate the mundane and time-consuming computer science tasks so that stakeholders from the scientific and engineering world can focus on their core activities. Parallel Works describes its eponymous solution as a multi-domain platform to build, deploy and manage scientific workflow applications, a sort of a Google Play / Apple store kind of model that significantly reduces the barrier to entry for HPC.

Initially, Parallel Works is targeting product design and engineering in manufacturing and the built environment.

“We want to help businesses up-level their R&D processes, their manufacturing processes, their sales and business development processes to really democratize this capability and make it usable and accessible to an entirely new group of people,” said Michela Wilde, co-founder, general manager and head of business development for Parallel Works.

Michael Wilde

Parallel Works is based on the open source Swift Parallel Scripting language that company founder and CEO Michael Wilde helped guide the development of at the University of Chicago and Argonne National Laboratory circa 2005-2006.

Swift evolved out of an investigation into the idea of “virtual data,” identified by grid computing pioneer and Globus project founder Ian Foster as a potential way to automate the recipes by which large scientific collaborations would do their computational science. If researchers could automate the recipes for creating new datasets, then big data sets wouldn’t have to be transported across the planet but could be re-derived on demand. The computational physics of that didn’t really pan out, said Michael Wilde, since it turned out the computation time itself would in many cases dominate, but from that project, the genesis of Swift was born.

“Very early in the project we realized there were two huge benefits for that approach – automating science workflows and being able to record the provenance by which computational scientists came to scientific conclusions,” said the CEO.

These insights were the foundation of a new programming model, the Virtual Data Language, that expressed the steps of the scientific computational study. The language evolved into Swift, which drew its moniker from its developers’ group, the “Scientific Workflow Team.”

The Parallel Works platform primary compute interface for managing compute resources, workflow access and data files.

Over the next few years with funding grants from the NSF, DOE and NIH, the Swift team, led by Wilde as PI, applied the techniques to a number of scientific problems in climate science, earth system science, cosmology, genomics, protein structure prediction, energy modeling, power grid modeling, and infrastructure modeling. There was a lot of work with materials science since Argonne is the home of Advanced Photon Source, one of the world’s major instruments used for crystallography and the investigations into new energy materials.

In 2014, the Swift team began pursuing opportunities for Swift in the commercial realm. Michael Wilde found a collaborator in Matthew Shaxted, then a civil engineer with architecture and urban planning firm Skidmore Owings & Merrill (SOM). Shaxted had been independently applying Swift to many different modeling modalities that SOM uses in their daily business, including fluid dynamics and climate modeling, interior and exterior daylight and radiation modeling, and transportation modeling.

“That was kind of our crucible – our first encounter with industry – and it was kind of rich in that, who knew that an architecture company has all these different uses of HPC?” said Michael Wilde.

He and Shaxted shared a vision of a Swift-based platform that would enable people that do not have deep computer science expertise to use high performance computing and very sophisticated modeling and simulation workflow capability.

In 2015, Parallel Works was founded by Michael Wilde, Matthew Shaxted and Michela Wilde to target the HPC needs of the broad space of architecture and civil engineering, urban planning and related disciplines. Sharpening their business plan, the three founders immediately started to look for private investments.

A response curve resulting from a Parallel Works optimization study.

The first key funding soon followed. A $120,000 angel funding award from the University of Chicago Innovation Fund enabled the team to start onboarding customers. In early 2016, they took in a small amount of seed funding and were also awarded a phase one SBIR from the DOE of $150,000. They are currently working on closing a larger seed round and have also applied for a phase two DOE SBIR grant.

In October 2016, the Swift project was awarded $3 million in NSF funding to enhance Swift and engage scientific user communities for the next three years. The award is part of the NSF’s Software Infrastructure for Sustained Innovation (SI2) program. While the grant supports only open source development of a “Swift ecosystem” for the specific needs of scientific communities, Parallel Works and any other company can use Swift and contribute back to its open source code base, thus helping to ensure the technology’s sustainability for all users. Wilde feels that this is the kind of win-win technology transfer that many entrepreneurial incubation programs like the NSF I-Corps, the DOE Lab Corps, and DOE/Argonne’s new program “Chain Reaction Innovations” are helping to nurture.

The Parallel Works Platform

To understand the value of Parallel Works, you have to first understand its engine, the Swift parallel scripting language. Wilde explains Swift’s main purpose is to orchestrate the parallel execution of application codes into workflow patterns, to carry out parameter sweeps, design of experiment studies, optimization studies, uncertainty quantifications, and also complex multi-stage processing pipelines related to simulation or data analytics or simulation analytics or both.

“Very often [in the scientific process] you would do for example multiple simulations, then you would analyze the results, then you may select some promising candidates from those designs that you studied and look at them with other tools,” said Michael Wilde. “What you get is this whole concept of the scientific and engineering workflow where you have to run anywhere from tens to tens of millions of invocations of higher level tools. Those tools are typically application programs, sometimes they could be a little finer grained, they could be function libraries, like machine learning libraries and things like that, that you need to knit together and orchestrate. So we sometimes call that a coordination language and that’s essentially what Swift is.”

Resulting visualization of a Parallel Works parameter sweep study. Each image is displayed in the HTML viewer and can be downloaded for further evaluation.

It’s important to note that the function of Swift here is not to take an existing application and make it run in parallel. What it does, said Wilde, is take existing applications that may themselves be either serial or parallel codes — written in a variety of programming models, such as OpenMP, MPI or CUDA — and it orchestrates the execution of those codes.

Parallel Works embeds the Swift engine into a turnkey Web-based software as a service. “We provide supercomputing as a service,” said Wilde. “And that service can provide the big compute for applications that are intrinsically big compute in nature or for big data applications that are somewhat compute-intensive, where applying the computation processes to big datasets is complex and needs a coordination language like Swift.”

Only a year and half out from their founding, Parallel Works is certainly an early stage startup, but they are open for business. They have several customers already and are actively taking on new ones. “We have the bandwidth and the marketing strategy to pursue any and all leads,” said Michael Wilde. In terms of geographical targets, Wilde said that they will work with customers globally and already have two customers based in the UK that serve global markets.

The CEO believes that despite the many cloud success stories, there’s a scarcity of toolkits that make the cloud really easy to use while keeping the generality of the solutions. “We think we fit really well into that important intersection, that sweet spot,” he said. “Because when you use Parallel Works to get to the cloud, A) a huge number of solutions are right there and ready to go, and B) those solutions are crafted in a very high-level programming model so they’re very readily adaptable without having to touch the messy parts of the cloud and C) when you do want to get into those messy parts, you can go deeper. So in other words, simple things are simple, but complex things are possible and more productive than they were ever before.”

A notable urban design and engineering firm has been a collaborator and early customer. Prior to working with Parallel Works, they were using the cloud to run their modeling studies. Said Michela Wilde, “Basically what they had to do was start up one instance on a cloud service, run one job, start up another instance, run a second job, start up a third instance, run a third job. And each step of the process, because their workload is a multistage very sophisticated complex process, they had to manually go in and take the work on the instance, reconfigure it, get it set for the next step of the process. That would have to happen across each of the different instances that this job was running on, until finally the results would all come back. With Parallel Works, they were able to have Swift orchestrate that entire process start to finish automatically across all of the different compute processes that they wanted to use.”

Parallel Works is entering a competitive marketplace that includes companies such as Cycle Computing, Rescale and UberCloud, but Michael Wilde likes to characterize its number one competitor as Ad hoc Inc.

“For example,” said the CEO, “this design and engineering firm had a pile of shell and Python code that was sort of hacked together by very smart scientists but not necessarily professional programmers. They were able to get the job done because most scientists do indeed know how to program, but what they had was not general, not adaptable, not robust, not resilient. It was basically a pile of spaghetti code.

“What they have now is a nice structured code base where their science code is encapsulated within the Swift code and now they can go back up to the Swift layer and play all sorts of what-if studies using Parallel Works to specify higher-level workflows around their core workflow to look at different scenarios, different geographies, different topologies of buildings, in those spaces, explore different solutions and they can do that in parallel where they couldn’t do that before.”

Adding this parallelization means quicker time to results, by a significant factor.

“Before, they would get a job from a client and their process would take about two weeks start to finish to run the jobs,” said Michela Wilde. “So even though they were running in the cloud, it would take a decent amount of time to complete. And now they can basically use Parallel Works, go directly into their client’s office, and run these workflows. They take a couple of hours and get the same results that used to take several weeks.”

Parallel Works currently runs customer workloads predominantly on Amazon Web Services, but also has the ability to deploy jobs on the Ohio Supercomputer Center’s HPC resources. Their longer term plan entails connecting to additional computing sites, such as Microsoft Azure, Google Compute Engine, OpenStack clouds and other HPC center resources. The company execs say that thanks to the underlying tech, creating the necessary drivers to connect to these infrastructures will be easy, but they are waiting to get a better sense of their customer needs and demand first.

They’re also working on building up an app developer community.

Said Michael Wilde, “We envision tens then hundreds then thousands of workflow solution creators sitting on top of a market of tens and hundreds of application tools, things like the CFD solvers, and the bioinformatics tools and the molecular dynamics materials science codes.”

Currently, Parallel Works has been developing solutions directly to seed the marketplace and to get immediate customers. They also have customers, including Klimaat Consulting and Innovation, a Canadian engineering consulting firm, that are developing their own solutions. “We didn’t write Klimaat’s solution,” said Wilde. “They wrote it on top of our platform and so we have other companies that are doing the same thing now of creating solutions, some of them for direct internal use, some of them for marketing to their audience as a workflow solution.”

Swift at Exascale

Out of the gate, Parallel Works is targeting the embarrassingly parallel coarse-grained workloads in the design and manufacturing space, but Swift has the potential to power finer-grained computing applications.

Under DOE ASCR funding for an exascale-focused project called X-Stack, the Swift team studied whether they could extend the Swift “many task” programming model to extreme scale and exascale applications, and whether it could actually program fine-grained applications. The project resulted in Swift/T (“T” after its “Turbine” workflow engine), explained Michael Wilde.

“Swift/T runs over MPI on supercomputers and extends Swift’s ability to run over extremely high node-count and core-count systems, handle very high task rates, and to also coordinate in-memory tasks and data objects (in addition to application programs that pass data via files),” he shared.

In 2014, the Swift team published a Supercomputing paper that documented a 500,000 core workflow run with 100-200 microsecond tasks on the Blue Waters Cray supercomputer, achieving 1.5 billion tasks per second with high-level for-loops.

“So when it really gets down to that kind of extreme scale we can really go there,” said Wilde. “Even with our portable Java version of Swift, we are able to pump out 500-600 tasks per second to a resource pool which goes well beyond what any kind of cluster scheduler can to today.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This