HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

By Tiffany Trader

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” wrote mathematician Alfred Lord Whitehead in his 1911 text, “An Introduction to Mathematics.” The words presaged the rise of computing and automation that would characterize the 20th century and also serve nicely as the guiding principle of new University of Chicago startup Parallel Works.

Like Globus, a University of Chicago/Argonne project with shared roots, Parallel Works is helping to automate the mundane and time-consuming computer science tasks so that stakeholders from the scientific and engineering world can focus on their core activities. Parallel Works describes its eponymous solution as a multi-domain platform to build, deploy and manage scientific workflow applications, a sort of a Google Play / Apple store kind of model that significantly reduces the barrier to entry for HPC.

Initially, Parallel Works is targeting product design and engineering in manufacturing and the built environment.

“We want to help businesses up-level their R&D processes, their manufacturing processes, their sales and business development processes to really democratize this capability and make it usable and accessible to an entirely new group of people,” said Michela Wilde, co-founder, general manager and head of business development for Parallel Works.

Michael Wilde

Parallel Works is based on the open source Swift Parallel Scripting language that company founder and CEO Michael Wilde helped guide the development of at the University of Chicago and Argonne National Laboratory circa 2005-2006.

Swift evolved out of an investigation into the idea of “virtual data,” identified by grid computing pioneer and Globus project founder Ian Foster as a potential way to automate the recipes by which large scientific collaborations would do their computational science. If researchers could automate the recipes for creating new datasets, then big data sets wouldn’t have to be transported across the planet but could be re-derived on demand. The computational physics of that didn’t really pan out, said Michael Wilde, since it turned out the computation time itself would in many cases dominate, but from that project, the genesis of Swift was born.

“Very early in the project we realized there were two huge benefits for that approach – automating science workflows and being able to record the provenance by which computational scientists came to scientific conclusions,” said the CEO.

These insights were the foundation of a new programming model, the Virtual Data Language, that expressed the steps of the scientific computational study. The language evolved into Swift, which drew its moniker from its developers’ group, the “Scientific Workflow Team.”

The Parallel Works platform primary compute interface for managing compute resources, workflow access and data files.

Over the next few years with funding grants from the NSF, DOE and NIH, the Swift team, led by Wilde as PI, applied the techniques to a number of scientific problems in climate science, earth system science, cosmology, genomics, protein structure prediction, energy modeling, power grid modeling, and infrastructure modeling. There was a lot of work with materials science since Argonne is the home of Advanced Photon Source, one of the world’s major instruments used for crystallography and the investigations into new energy materials.

In 2014, the Swift team began pursuing opportunities for Swift in the commercial realm. Michael Wilde found a collaborator in Matthew Shaxted, then a civil engineer with architecture and urban planning firm Skidmore Owings & Merrill (SOM). Shaxted had been independently applying Swift to many different modeling modalities that SOM uses in their daily business, including fluid dynamics and climate modeling, interior and exterior daylight and radiation modeling, and transportation modeling.

“That was kind of our crucible – our first encounter with industry – and it was kind of rich in that, who knew that an architecture company has all these different uses of HPC?” said Michael Wilde.

He and Shaxted shared a vision of a Swift-based platform that would enable people that do not have deep computer science expertise to use high performance computing and very sophisticated modeling and simulation workflow capability.

In 2015, Parallel Works was founded by Michael Wilde, Matthew Shaxted and Michela Wilde to target the HPC needs of the broad space of architecture and civil engineering, urban planning and related disciplines. Sharpening their business plan, the three founders immediately started to look for private investments.

A response curve resulting from a Parallel Works optimization study.

The first key funding soon followed. A $120,000 angel funding award from the University of Chicago Innovation Fund enabled the team to start onboarding customers. In early 2016, they took in a small amount of seed funding and were also awarded a phase one SBIR from the DOE of $150,000. They are currently working on closing a larger seed round and have also applied for a phase two DOE SBIR grant.

In October 2016, the Swift project was awarded $3 million in NSF funding to enhance Swift and engage scientific user communities for the next three years. The award is part of the NSF’s Software Infrastructure for Sustained Innovation (SI2) program. While the grant supports only open source development of a “Swift ecosystem” for the specific needs of scientific communities, Parallel Works and any other company can use Swift and contribute back to its open source code base, thus helping to ensure the technology’s sustainability for all users. Wilde feels that this is the kind of win-win technology transfer that many entrepreneurial incubation programs like the NSF I-Corps, the DOE Lab Corps, and DOE/Argonne’s new program “Chain Reaction Innovations” are helping to nurture.

The Parallel Works Platform

To understand the value of Parallel Works, you have to first understand its engine, the Swift parallel scripting language. Wilde explains Swift’s main purpose is to orchestrate the parallel execution of application codes into workflow patterns, to carry out parameter sweeps, design of experiment studies, optimization studies, uncertainty quantifications, and also complex multi-stage processing pipelines related to simulation or data analytics or simulation analytics or both.

“Very often [in the scientific process] you would do for example multiple simulations, then you would analyze the results, then you may select some promising candidates from those designs that you studied and look at them with other tools,” said Michael Wilde. “What you get is this whole concept of the scientific and engineering workflow where you have to run anywhere from tens to tens of millions of invocations of higher level tools. Those tools are typically application programs, sometimes they could be a little finer grained, they could be function libraries, like machine learning libraries and things like that, that you need to knit together and orchestrate. So we sometimes call that a coordination language and that’s essentially what Swift is.”

Resulting visualization of a Parallel Works parameter sweep study. Each image is displayed in the HTML viewer and can be downloaded for further evaluation.

It’s important to note that the function of Swift here is not to take an existing application and make it run in parallel. What it does, said Wilde, is take existing applications that may themselves be either serial or parallel codes — written in a variety of programming models, such as OpenMP, MPI or CUDA — and it orchestrates the execution of those codes.

Parallel Works embeds the Swift engine into a turnkey Web-based software as a service. “We provide supercomputing as a service,” said Wilde. “And that service can provide the big compute for applications that are intrinsically big compute in nature or for big data applications that are somewhat compute-intensive, where applying the computation processes to big datasets is complex and needs a coordination language like Swift.”

Only a year and half out from their founding, Parallel Works is certainly an early stage startup, but they are open for business. They have several customers already and are actively taking on new ones. “We have the bandwidth and the marketing strategy to pursue any and all leads,” said Michael Wilde. In terms of geographical targets, Wilde said that they will work with customers globally and already have two customers based in the UK that serve global markets.

The CEO believes that despite the many cloud success stories, there’s a scarcity of toolkits that make the cloud really easy to use while keeping the generality of the solutions. “We think we fit really well into that important intersection, that sweet spot,” he said. “Because when you use Parallel Works to get to the cloud, A) a huge number of solutions are right there and ready to go, and B) those solutions are crafted in a very high-level programming model so they’re very readily adaptable without having to touch the messy parts of the cloud and C) when you do want to get into those messy parts, you can go deeper. So in other words, simple things are simple, but complex things are possible and more productive than they were ever before.”

A notable urban design and engineering firm has been a collaborator and early customer. Prior to working with Parallel Works, they were using the cloud to run their modeling studies. Said Michela Wilde, “Basically what they had to do was start up one instance on a cloud service, run one job, start up another instance, run a second job, start up a third instance, run a third job. And each step of the process, because their workload is a multistage very sophisticated complex process, they had to manually go in and take the work on the instance, reconfigure it, get it set for the next step of the process. That would have to happen across each of the different instances that this job was running on, until finally the results would all come back. With Parallel Works, they were able to have Swift orchestrate that entire process start to finish automatically across all of the different compute processes that they wanted to use.”

Parallel Works is entering a competitive marketplace that includes companies such as Cycle Computing, Rescale and UberCloud, but Michael Wilde likes to characterize its number one competitor as Ad hoc Inc.

“For example,” said the CEO, “this design and engineering firm had a pile of shell and Python code that was sort of hacked together by very smart scientists but not necessarily professional programmers. They were able to get the job done because most scientists do indeed know how to program, but what they had was not general, not adaptable, not robust, not resilient. It was basically a pile of spaghetti code.

“What they have now is a nice structured code base where their science code is encapsulated within the Swift code and now they can go back up to the Swift layer and play all sorts of what-if studies using Parallel Works to specify higher-level workflows around their core workflow to look at different scenarios, different geographies, different topologies of buildings, in those spaces, explore different solutions and they can do that in parallel where they couldn’t do that before.”

Adding this parallelization means quicker time to results, by a significant factor.

“Before, they would get a job from a client and their process would take about two weeks start to finish to run the jobs,” said Michela Wilde. “So even though they were running in the cloud, it would take a decent amount of time to complete. And now they can basically use Parallel Works, go directly into their client’s office, and run these workflows. They take a couple of hours and get the same results that used to take several weeks.”

Parallel Works currently runs customer workloads predominantly on Amazon Web Services, but also has the ability to deploy jobs on the Ohio Supercomputer Center’s HPC resources. Their longer term plan entails connecting to additional computing sites, such as Microsoft Azure, Google Compute Engine, OpenStack clouds and other HPC center resources. The company execs say that thanks to the underlying tech, creating the necessary drivers to connect to these infrastructures will be easy, but they are waiting to get a better sense of their customer needs and demand first.

They’re also working on building up an app developer community.

Said Michael Wilde, “We envision tens then hundreds then thousands of workflow solution creators sitting on top of a market of tens and hundreds of application tools, things like the CFD solvers, and the bioinformatics tools and the molecular dynamics materials science codes.”

Currently, Parallel Works has been developing solutions directly to seed the marketplace and to get immediate customers. They also have customers, including Klimaat Consulting and Innovation, a Canadian engineering consulting firm, that are developing their own solutions. “We didn’t write Klimaat’s solution,” said Wilde. “They wrote it on top of our platform and so we have other companies that are doing the same thing now of creating solutions, some of them for direct internal use, some of them for marketing to their audience as a workflow solution.”

Swift at Exascale

Out of the gate, Parallel Works is targeting the embarrassingly parallel coarse-grained workloads in the design and manufacturing space, but Swift has the potential to power finer-grained computing applications.

Under DOE ASCR funding for an exascale-focused project called X-Stack, the Swift team studied whether they could extend the Swift “many task” programming model to extreme scale and exascale applications, and whether it could actually program fine-grained applications. The project resulted in Swift/T (“T” after its “Turbine” workflow engine), explained Michael Wilde.

“Swift/T runs over MPI on supercomputers and extends Swift’s ability to run over extremely high node-count and core-count systems, handle very high task rates, and to also coordinate in-memory tasks and data objects (in addition to application programs that pass data via files),” he shared.

In 2014, the Swift team published a Supercomputing paper that documented a 500,000 core workflow run with 100-200 microsecond tasks on the Blue Waters Cray supercomputer, achieving 1.5 billion tasks per second with high-level for-loops.

“So when it really gets down to that kind of extreme scale we can really go there,” said Wilde. “Even with our portable Java version of Swift, we are able to pump out 500-600 tasks per second to a resource pool which goes well beyond what any kind of cluster scheduler can to today.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Bailey Hutchison Convention Center and much of the surrounding Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

SC 30th Anniversary Perennials 1988-2018

November 8, 2018

Many conferences try, fewer succeed. Thirty years ago, no one knew if the first SC would also be the last. Thirty years later, we know it’s the biggest annual Read more…

By Doug Black & Tiffany Trader

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This