Drug Developers Use Google Cloud HPC in the Fight Against ALS

By Doug Black

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Finding the needle is a trial-and-error process of monumental proportions for scientists at pharmaceutical companies, medical research centers and academic institutions. As models grow in scale so too does the need for HPC resources to run simulations iteratively, to try-and-fail fast until success is found.

That’s all well and good if there’s ready access to HPC on premises. If not, drug developers, such as ALS researcher Dr. May Khanna, Pharmacology Department assistant professor at the University of Arizona, have turned to HPC resources provided by public cloud services. But using AWS, Azure or Google introduces a host of daunting compute management problems that tax the skills and time availability of most on-site IT staffs.

These tasks include data placement, instance provisioning, job scheduling, configuring software and networks, cluster startup and tear-down, cloud provider setup, cost management and instance health checking. To handle these cloud orchestration functions tied to 5,000 cores of Google Cloud Preemptive VMs (PVMs), Dr. Khanna and her team at Arizona turned to Cycle Computing to run “molecular docking” simulations at scale by Schrödinger Glide molecular modeling drug design software.

The results: simulations that would otherwise take months have been compressed to a few hours, short enough to be run during one of Dr. Khanna’s seminars and the output shared with students.

Dr. May Khanna

Developing new drugs to target a specific disease often starts with the building blocks of the compounds that become the drugs. The process begins with finding small molecules that can target specific proteins that, when combined, can interact in a way that becomes the disease’s starting point. The goal is to find a molecule that breaks the proteins apart. This is done by simulating how the small molecules dock to the specific protein locations. These simulations are computationally intensive, and many molecules need to be simulated to find a few good candidates.

Without powerful compute resources, researchers must artificially constrain their searches, limiting the number of molecules to simulate. And they only check an area of the protein known to be biologically active. Even with these constraints, running simulations takes a long time. Done right, molecular docking is an iterative process that requires simulation, biological verification, and then further refinement. Shortening the iteration time is important to advancing the research.

The objective of Dr. Khanna’s work was to simulate the docking of 1 million compounds to one target protein. After a simulation was complete, the protein was produced in the lab, and compounds were then tested with nuclear magnetic resonance spectroscopy.

“It’s a target (protein) that’s been implicated in ALS,” the energetic Dr. Khanna told EnterpriseTech (HPCwire‘s sister pub). “The idea is that the particular protein was very interesting, people who modulated it in different ways found some significant improvement in the ALS models they have with (lab) mice. The closer we can link biology to what we’re seeing as a target, the better chance of actually getting to a real therapeutic.”

“Modulating,” Dr. Khanna explained, is disrupting two proteins interacting in a way that is associated with ALS, a disease that currently afflicts about 20,000 Americans and for which there is no cure. “We’re trying to disrupt them, to release them to do their normal jobs,” she said.

She said CycleCloud plays a central role in running Schrödinger Glide simulations. Without Google Cloud PVMs, simulations would take too long and model sizes would be too small to generate meaningful results. Without CycleCloud, the management of 5,000 PVM nodes would not be possible.

CycleCloud provides a web-based GUI, a command line interface and APIs to define cloud-based clusters. It auto-scales clusters by instance types, maximum cluster size and costing parameters, deploying systems of up to 156,000 cores while validating each piece of the infrastructure. Additionally, it syncs in-house data repositories with cloud locations in a policy / job driven fashion, to lower costs.

It should be noted that the use of Google Cloud’s PVMs, while helping to hold down the cost of running simulations to $200, contribute an additional degree of complexity to Dr. Khanna’s project work. Preemptible compute capacity offers the advantage of a consistent price not subject to dynamic demand pricing, as are other public cloud instances. PVMs are assigned to a job for a finite period of time but – here’s the rub – they can be revoked at any moment. While Dr. Khanna’s workflow was ideal for leveraging PVMs, since it consists of small, short-running jobs, PVMs can disappear at without warning.

In the case of Dr. Khanna’s ALS research work, said Jason Stowe, CEO of Cycle Computing said, “if you’re willing to getting rid of the node, but you’re able to use it during that timeframe at substantially lower cost, that allows you get a lot more computing bang for your buck. CycleCloud automates the process, taking care of nodes that go away, making sure the environment isn’t corrupted, and other technical aspects that we take care of so the user doesn’t have to.”

The simulation process is divided into two parts. The first step uses the Schrödinger LigPrep package, which converts 2D structures to the 3D format used in the next stage. This stage started with 4 GB of input data staged to an NFS filer. The output data was approximately 800KB and was stored on the NFS filer as well. To get the simulation done as efficiently as possible, the workload was split into 300 smaller jobs to assist in scaling the next stage of the workflow. In total, the first stage consumed 1500 core-hours of computation.

The Schrödinger Glide software package performs the second stage of the process, where the actual docking simulation is performed. Each of the 300 sub-jobs consists of four stages, each with an attendant prep stage. The total consumption was approximately 20,000 core-hours using 5,000 cores of n1-highcpu-16 instances. Each instance had 16 virtual cores with 60 gigabytes of RAM. The CycleCloud software dynamically sized the cluster based on the number of jobs in queue and replaced preempted instances.

Dr. Khanna’s research is the early stages of a process that, if successful, could take several years before reaching human clinical trials.

“The faster we can do this, the less time we have to wait for results, so we can go back and test it again and try to figure out what compounds are really binding,” she said, “the faster the process can move along.”

Dr. Khanna said plans are in place to increase the size of the pool of potential compounds, as well as include other proteins in the simulation to look for interactions that would not typically be seen until later in the process. The team will also simulate over the entire surface of the protein instead of just a known-active area unlocking “an amazing amount of power” in the search process, she said.

“That jump between docking to binding to biological testing takes a really long time, but I think we can move forward on that with this cloud computing capacity,” she said. “The mice data that we saw was really exciting…, you could see true significant changes with the mice. I can’t tell you we’ve discovered the greatest thing for ALS, but showing that if we take these small molecules and we can see improvement, even that is so significant.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This