Drug Developers Use Google Cloud HPC in the Fight Against ALS

By Doug Black

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Finding the needle is a trial-and-error process of monumental proportions for scientists at pharmaceutical companies, medical research centers and academic institutions. As models grow in scale so too does the need for HPC resources to run simulations iteratively, to try-and-fail fast until success is found.

That’s all well and good if there’s ready access to HPC on premises. If not, drug developers, such as ALS researcher Dr. May Khanna, Pharmacology Department assistant professor at the University of Arizona, have turned to HPC resources provided by public cloud services. But using AWS, Azure or Google introduces a host of daunting compute management problems that tax the skills and time availability of most on-site IT staffs.

These tasks include data placement, instance provisioning, job scheduling, configuring software and networks, cluster startup and tear-down, cloud provider setup, cost management and instance health checking. To handle these cloud orchestration functions tied to 5,000 cores of Google Cloud Preemptive VMs (PVMs), Dr. Khanna and her team at Arizona turned to Cycle Computing to run “molecular docking” simulations at scale by Schrödinger Glide molecular modeling drug design software.

The results: simulations that would otherwise take months have been compressed to a few hours, short enough to be run during one of Dr. Khanna’s seminars and the output shared with students.

Dr. May Khanna

Developing new drugs to target a specific disease often starts with the building blocks of the compounds that become the drugs. The process begins with finding small molecules that can target specific proteins that, when combined, can interact in a way that becomes the disease’s starting point. The goal is to find a molecule that breaks the proteins apart. This is done by simulating how the small molecules dock to the specific protein locations. These simulations are computationally intensive, and many molecules need to be simulated to find a few good candidates.

Without powerful compute resources, researchers must artificially constrain their searches, limiting the number of molecules to simulate. And they only check an area of the protein known to be biologically active. Even with these constraints, running simulations takes a long time. Done right, molecular docking is an iterative process that requires simulation, biological verification, and then further refinement. Shortening the iteration time is important to advancing the research.

The objective of Dr. Khanna’s work was to simulate the docking of 1 million compounds to one target protein. After a simulation was complete, the protein was produced in the lab, and compounds were then tested with nuclear magnetic resonance spectroscopy.

“It’s a target (protein) that’s been implicated in ALS,” the energetic Dr. Khanna told EnterpriseTech (HPCwire‘s sister pub). “The idea is that the particular protein was very interesting, people who modulated it in different ways found some significant improvement in the ALS models they have with (lab) mice. The closer we can link biology to what we’re seeing as a target, the better chance of actually getting to a real therapeutic.”

“Modulating,” Dr. Khanna explained, is disrupting two proteins interacting in a way that is associated with ALS, a disease that currently afflicts about 20,000 Americans and for which there is no cure. “We’re trying to disrupt them, to release them to do their normal jobs,” she said.

She said CycleCloud plays a central role in running Schrödinger Glide simulations. Without Google Cloud PVMs, simulations would take too long and model sizes would be too small to generate meaningful results. Without CycleCloud, the management of 5,000 PVM nodes would not be possible.

CycleCloud provides a web-based GUI, a command line interface and APIs to define cloud-based clusters. It auto-scales clusters by instance types, maximum cluster size and costing parameters, deploying systems of up to 156,000 cores while validating each piece of the infrastructure. Additionally, it syncs in-house data repositories with cloud locations in a policy / job driven fashion, to lower costs.

It should be noted that the use of Google Cloud’s PVMs, while helping to hold down the cost of running simulations to $200, contribute an additional degree of complexity to Dr. Khanna’s project work. Preemptible compute capacity offers the advantage of a consistent price not subject to dynamic demand pricing, as are other public cloud instances. PVMs are assigned to a job for a finite period of time but – here’s the rub – they can be revoked at any moment. While Dr. Khanna’s workflow was ideal for leveraging PVMs, since it consists of small, short-running jobs, PVMs can disappear at without warning.

In the case of Dr. Khanna’s ALS research work, said Jason Stowe, CEO of Cycle Computing said, “if you’re willing to getting rid of the node, but you’re able to use it during that timeframe at substantially lower cost, that allows you get a lot more computing bang for your buck. CycleCloud automates the process, taking care of nodes that go away, making sure the environment isn’t corrupted, and other technical aspects that we take care of so the user doesn’t have to.”

The simulation process is divided into two parts. The first step uses the Schrödinger LigPrep package, which converts 2D structures to the 3D format used in the next stage. This stage started with 4 GB of input data staged to an NFS filer. The output data was approximately 800KB and was stored on the NFS filer as well. To get the simulation done as efficiently as possible, the workload was split into 300 smaller jobs to assist in scaling the next stage of the workflow. In total, the first stage consumed 1500 core-hours of computation.

The Schrödinger Glide software package performs the second stage of the process, where the actual docking simulation is performed. Each of the 300 sub-jobs consists of four stages, each with an attendant prep stage. The total consumption was approximately 20,000 core-hours using 5,000 cores of n1-highcpu-16 instances. Each instance had 16 virtual cores with 60 gigabytes of RAM. The CycleCloud software dynamically sized the cluster based on the number of jobs in queue and replaced preempted instances.

Dr. Khanna’s research is the early stages of a process that, if successful, could take several years before reaching human clinical trials.

“The faster we can do this, the less time we have to wait for results, so we can go back and test it again and try to figure out what compounds are really binding,” she said, “the faster the process can move along.”

Dr. Khanna said plans are in place to increase the size of the pool of potential compounds, as well as include other proteins in the simulation to look for interactions that would not typically be seen until later in the process. The team will also simulate over the entire surface of the protein instead of just a known-active area unlocking “an amazing amount of power” in the search process, she said.

“That jump between docking to binding to biological testing takes a really long time, but I think we can move forward on that with this cloud computing capacity,” she said. “The mice data that we saw was really exciting…, you could see true significant changes with the mice. I can’t tell you we’ve discovered the greatest thing for ALS, but showing that if we take these small molecules and we can see improvement, even that is so significant.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This