TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

By Tiffany Trader

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia’s DGX-1 system, IBM’s “Minsky” platform and the Supermicro SuperServer (1028GQ-TXR).

The press photo shared by Tokyo Tech revealed TSUBAME3.0 to be an HPE-branded SGI ICE supercomputer. The choice is not surprising considering that SGI has long held a strong presence in Japan. SGI Japan, the primary contractor here, has collaborated with Tokyo Tech on a brand-new board design that we’ve been told is destined for the HPE product line.

TSUBAME3.0 node design (source: Tokyo Tech)

The board is first of its kind in employing Nvidia GPUs (four), NVLink processor interconnect technology, Intel processors (two) and the Intel Omni-Path Architecture (OPA) fabric. Four SXM2 P100s are configured into a hybrid mesh cube, making full use of the NVLink (1.0) interconnect to offer a large amount of memory bandwidth between the GPUs. As you can see in the figure on the right, each half the quad connects to its own PLX PCIe switch, which links to an Intel Xeon CPU. The PCIe switches also enable direct one-to-one connections between the GPUs and an Omni-Path link. A slide from a presentation shared by Tokyo Tech depicts how the this hooks into the fabric.

TSUBAME3.0 will be comprised of 540 such nodes for a total of 2,160 SXM2 P100s and 1,080 Xeon E5-2680 V4 (14 core) CPUs.

At the rack level, 36 server blades house a total of 144 Pascals and 72 Xeons. The components are water cooled with an inlet water temperature a warm 32 degrees (C), for a PUE of 1.033. “That’s lower than any other supercomputer I know,” commented Tokyo Tech Professor Satoshi Matsuoka, who is leading the design. (Here’s a diagram of the entire cooling system.)

Each node also has 2TBs of NVMe SSD for I/O acceleration, totalling more than 1 petabyte for the entire system. It can be used locally, or aggregated on-the-fly with BGFS as an ad-hoc “Burst-Buffer” filesystem, Matsuoka told us.

The second-tier storage is composed of DDN’s Exascalar technology, which uses controller integration to achieve a 15.9PB Lustre parallel file system in three racks.

TSUBAME3.0 node overview (source: Tokyo Tech)

With 15 SGI ICE XA racks and two network racks, TSUBAME3.0 delivers 12.2 petaflops of spec’d computational power within 20 racks (excluding the in-row chillers). This makes TSUBAME 3.0 the smallest >10 petaflops machine in the world, said Matsuoka, who offered for comparison the K computer (10.5 Linpack petaflops, 11.3 peak) which extends to 1,000 racks, a 66X delta.

Like TSUBAME2.0/2.5, the new system continues the endorsement of smart partitioning. “The TSUBAME3.0 node is ‘fat’ but we want flexible partitioning,” said Matsuoka. “We will be using container technology as a default, being able to partition the nodes arbitrarily into pieces for flexible scheduling and achieving very high utilization. A job that uses only CPUs or just one GPU won’t waste the remaining resources on the node.”

As we noted in our earlier coverage, total rated system performance is 12.15 double-precision petaflops, 24.3 single-precision petaflops and 47.2 half-precision petaflops, aka “AI-Petaflops.”

“Since we will keep TSUBAME2.5 and KFC alive, the combined ‘AI-capable’ performances of the three machines will reach 65.8 petaflops, making it the biggest capacity infrastructure for ML/AI  in Japan, or 6 times faster than the K-computer,” said Matsuoka.

Satoshi Matsuoka with the TSUBAME3.0 blade

At yesterday’s press event in Japan, Professor Matsuoka also revealed that Tokyo Tech and the National Institute of Advanced Industrial Science and Technology (AIST) are going to open their joint “Open Innovation Laboratory” (OIL) next Monday, Feb. 20. Prof. Matsuoka will lead this organization and TSUBAME3.0 will be partially used for these joint efforts. The main resource of OIL will be an upcoming massive AI supercomputer, named “ABCI,” announced in late November (2016). So in some respects, TSUBAME3.0, with an operational target of summer 2017, will be a prototype machine to ABCI, which has a targeted installation of Q1 2018.

“Overall, I believe TSUBAME3.0 to be way above class compared to any supercomputers that exist, including the [other] GPU-based ones,” Professor Matsuoka told HPCwire. “There are not really any technical compromises, and thus the efficiency of the machine by every metric will be extremely good.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This