HPC Technique Propels Deep Learning at Scale

By Tiffany Trader

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community.

The technique, a modified version of the OpenMPI algorithm “ring all-reduce,” is being used at Baidu to parallelize the training of their speech recognition model, Deep Speech 2, across many GPU nodes. The two pieces of software Baidu is announcing today are the baidu-allreduce C library, as well as a patch for TensorFlow, which allows people who have already modeled in TensorFlow to compile this new version and use it for parallelizing across many devices. The codes are available on GitHub.

Ring all-reduce – all GPUs send data simultaneously

Baidu’s SVAIL team developed the approach about two years ago for their internal deep learning framework, named Gene and Majel (in tribute to the famous Star Trek creator and the actress who voiced the onboard computer interfaces for the series). The technique is commonplace in HPC circles, but underused within artificial intelligence and deep learning, according to Baidu.

Many of the researchers in the SVAIL group had come from the high performance computing space and recognized the competitive edge it offered.

“The algorithm is actually part of OpenMPI, but the OpenMPI implementation is not as fast,” comments Baidu Research Scientist Shubho Sengupta. “So the way we stumbled upon it was we started using OpenMPI for doing training and we realized it was not scaling to the extent that we want it to scale. I started digging through the OpenMPI source, found the algorithm, saw that it’s not very efficient, and reimplemented it.”

The SVAIL researchers wrote their own implementation of the ring algorithm for higher performance and better stability. The key distinction from the OpenMPI version is that the SVAIL implementation avoids extraneous copies between the CPU and GPU.

Explains Sengupta, “Once OpenMPI does the communication of these matrices, if the matrices are in GPU memory, it actually copies to CPU memory to do the reduction part of it – that’s actually quite wasteful. You don’t really need to do a copy, you could just write a small kernel that does the reduction in GPU memory space itself. And this especially helps when you are doing all-reduce within a node and all the GPUs are within a PCI root complex, then it doesn’t do any of the copies actually – it can just do everything in GPU memory space. This very simple idea of eliminating this copy resulted in this speedup in scaling over OpenMPI’s own implementation.”

Employing this algorithm along with SVAIL’s focus on fast networking (InfiniBand) and careful hardware-software codesign has enabled the team to get linear GPU scaling up to 128 GPUs, an achievement that was detailed in their December 2015 paper, “Deep Speech 2: End-to-End Speech Recognition in English and Mandarin.”

With their internal implementation of ring all-reduce, the team achieves between a 2.3-21.4X speedup over OpenMPI (version 1.8.5) depending on the number of GPUs.

Sengupta notes that their implementation is fastest for a small number of GPUs. “At 8 GPUs it’s about 20x faster, then as you increase the number of GPUs, it drops because now you actually have to copy data to the CPU to send across the network. But for the internal framework, we can scale all the way up to 128 GPUs and get linear scaling.”

Comparison of two different all-reduce implementations. All times are in seconds. Performance gain is the ratio of OpenMPI all-reduce time to SVAIL’s all-reduce time. (Source: Deep Speech 2 paper)

Sengupta’s teammate Baidu Research Scientist Andrew Gibiansky says similar benefits can now be seen with TensorFlow: “In terms of the TensorFlow implementation, we get the same linear scaling path past eight. In terms of a comparison with running on a single GPU, it ends up being about 31x faster at 40 GPUs.”

After the Deep Speech 2 paper was published, the SVAIL team began getting requests from the community who wanted to know more about the implementation. Given that the algorithm is pretty tightly coupled to SVAIL’s proprietary deep learning framework, they needed to come up with a different way to release it, so they created two new implementations, one specifically for TensorFlow and one that is more general.

Gibiansky, who led the work on the TensorFlow patch, describes their multi-pronged approach to disseminating the information. “You can read the blog post [for a thorough technical explanation] and figure it out. If you’re using TensorFlow, you can use our modification to train your own models with this. And if you’re a deep learning author, you can look at our C library and integrate that. The goal is really to take this idea we’ve found to be really successful internally and try to start spreading it so that other people can also take advantage of it.”

Sengupta shares an interesting perspective on the opportunities to be mined for deep learning within HPC.

“With MPI – people [in deep learning] think that it is this old technology, that it is not relevant, but I think because of our work we have shown that you can build very fast collectives using MPI and that allows you to do synchronous gradient descent which converges faster, gives you deterministic results and you don’t need to do asynchronous gradient descent with parameter servers which was the dominant way of doing this when we first started,” says Sengupta.

As for the reduced-copy approach propagating back to MPI, Gibiansky notes that if you look at some of the other MPI implementations, they’re slowly moving their collectives to GPU versions. “MVPICH recently introduced an all-gather that doesn’t end up copying to CPU – so OpenMPI will probably get there, it just might take a while. Potentially giving this a little more visibility, we can spur that on.”

“There’s a lot of interest now in collectives and one thing we also realized is the all-reduce operation used in traditional HPC setups, it actually transfers data that’s actually not very large,” Sengupta adds. “What it usually does, when I talk to HPC people, it’s trying to figure out the status of something across a bunch of machines – while in deep learning we are transferring these large matrices – like 2048×2048, essentially 4 million 32-bit floating points. For the traditional HPC community, this is a very atypical input for all-reduce. The traditional HPC community does not actually use all-reduce with really large data sizes. I think with deep learning, more and more people are realizing that collective operations for really large matrices is also very important.”

A detailed explanation of ring all-reduce and Baidu’s GPU implementation is covered in this technical blog post, published today by Baidu Research. A variant of the technique is also used to provide high-performance node-local scaling for PaddlePaddle, the company’s open source deep learning framework.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This