HPC Technique Propels Deep Learning at Scale

By Tiffany Trader

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community.

The technique, a modified version of the OpenMPI algorithm “ring all-reduce,” is being used at Baidu to parallelize the training of their speech recognition model, Deep Speech 2, across many GPU nodes. The two pieces of software Baidu is announcing today are the baidu-allreduce C library, as well as a patch for TensorFlow, which allows people who have already modeled in TensorFlow to compile this new version and use it for parallelizing across many devices. The codes are available on GitHub.

Ring all-reduce – all GPUs send data simultaneously

Baidu’s SVAIL team developed the approach about two years ago for their internal deep learning framework, named Gene and Majel (in tribute to the famous Star Trek creator and the actress who voiced the onboard computer interfaces for the series). The technique is commonplace in HPC circles, but underused within artificial intelligence and deep learning, according to Baidu.

Many of the researchers in the SVAIL group had come from the high performance computing space and recognized the competitive edge it offered.

“The algorithm is actually part of OpenMPI, but the OpenMPI implementation is not as fast,” comments Baidu Research Scientist Shubho Sengupta. “So the way we stumbled upon it was we started using OpenMPI for doing training and we realized it was not scaling to the extent that we want it to scale. I started digging through the OpenMPI source, found the algorithm, saw that it’s not very efficient, and reimplemented it.”

The SVAIL researchers wrote their own implementation of the ring algorithm for higher performance and better stability. The key distinction from the OpenMPI version is that the SVAIL implementation avoids extraneous copies between the CPU and GPU.

Explains Sengupta, “Once OpenMPI does the communication of these matrices, if the matrices are in GPU memory, it actually copies to CPU memory to do the reduction part of it – that’s actually quite wasteful. You don’t really need to do a copy, you could just write a small kernel that does the reduction in GPU memory space itself. And this especially helps when you are doing all-reduce within a node and all the GPUs are within a PCI root complex, then it doesn’t do any of the copies actually – it can just do everything in GPU memory space. This very simple idea of eliminating this copy resulted in this speedup in scaling over OpenMPI’s own implementation.”

Employing this algorithm along with SVAIL’s focus on fast networking (InfiniBand) and careful hardware-software codesign has enabled the team to get linear GPU scaling up to 128 GPUs, an achievement that was detailed in their December 2015 paper, “Deep Speech 2: End-to-End Speech Recognition in English and Mandarin.”

With their internal implementation of ring all-reduce, the team achieves between a 2.3-21.4X speedup over OpenMPI (version 1.8.5) depending on the number of GPUs.

Sengupta notes that their implementation is fastest for a small number of GPUs. “At 8 GPUs it’s about 20x faster, then as you increase the number of GPUs, it drops because now you actually have to copy data to the CPU to send across the network. But for the internal framework, we can scale all the way up to 128 GPUs and get linear scaling.”

Comparison of two different all-reduce implementations. All times are in seconds. Performance gain is the ratio of OpenMPI all-reduce time to SVAIL’s all-reduce time. (Source: Deep Speech 2 paper)

Sengupta’s teammate Baidu Research Scientist Andrew Gibiansky says similar benefits can now be seen with TensorFlow: “In terms of the TensorFlow implementation, we get the same linear scaling path past eight. In terms of a comparison with running on a single GPU, it ends up being about 31x faster at 40 GPUs.”

After the Deep Speech 2 paper was published, the SVAIL team began getting requests from the community who wanted to know more about the implementation. Given that the algorithm is pretty tightly coupled to SVAIL’s proprietary deep learning framework, they needed to come up with a different way to release it, so they created two new implementations, one specifically for TensorFlow and one that is more general.

Gibiansky, who led the work on the TensorFlow patch, describes their multi-pronged approach to disseminating the information. “You can read the blog post [for a thorough technical explanation] and figure it out. If you’re using TensorFlow, you can use our modification to train your own models with this. And if you’re a deep learning author, you can look at our C library and integrate that. The goal is really to take this idea we’ve found to be really successful internally and try to start spreading it so that other people can also take advantage of it.”

Sengupta shares an interesting perspective on the opportunities to be mined for deep learning within HPC.

“With MPI – people [in deep learning] think that it is this old technology, that it is not relevant, but I think because of our work we have shown that you can build very fast collectives using MPI and that allows you to do synchronous gradient descent which converges faster, gives you deterministic results and you don’t need to do asynchronous gradient descent with parameter servers which was the dominant way of doing this when we first started,” says Sengupta.

As for the reduced-copy approach propagating back to MPI, Gibiansky notes that if you look at some of the other MPI implementations, they’re slowly moving their collectives to GPU versions. “MVPICH recently introduced an all-gather that doesn’t end up copying to CPU – so OpenMPI will probably get there, it just might take a while. Potentially giving this a little more visibility, we can spur that on.”

“There’s a lot of interest now in collectives and one thing we also realized is the all-reduce operation used in traditional HPC setups, it actually transfers data that’s actually not very large,” Sengupta adds. “What it usually does, when I talk to HPC people, it’s trying to figure out the status of something across a bunch of machines – while in deep learning we are transferring these large matrices – like 2048×2048, essentially 4 million 32-bit floating points. For the traditional HPC community, this is a very atypical input for all-reduce. The traditional HPC community does not actually use all-reduce with really large data sizes. I think with deep learning, more and more people are realizing that collective operations for really large matrices is also very important.”

A detailed explanation of ring all-reduce and Baidu’s GPU implementation is covered in this technical blog post, published today by Baidu Research. A variant of the technique is also used to provide high-performance node-local scaling for PaddlePaddle, the company’s open source deep learning framework.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire