IDC: Will the Real Exascale Race Please Stand Up?

By Bob Sorensen, IDC

February 21, 2017


Editor’s note: In this commentary, Bob Sorensen, research vice president, IDC High Performance Computing group, argues it’s clear we’ll get to exascale soon, but it’s hardly clear exactly what that will look like. In fact, says Sorensen, there will likely be several flavors of exascale, each favoring different applications and different technologies.

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Meanwhile commercial concerns, either working in conjunction with a government partner, or going it alone, are also looking at similar development agendas. So it’s a pretty safe bet that someone will stand up an exascale system in the next few years. Some will celebrate while others will gnash their teeth. So while we can all agree that there is an exascale race, based on a look at the various visions for such a system, most seem to have their own idea of where the finish line is.

In the past when the HPC community went through its periodic assault on computer performance expressed in scientific notation (gflops, tflops, pflops, etc.), HPC systems had relatively narrow use cases, and computation capability – the ability to churn floating point operations was the undisputed king of performance metrics. That’s what made benchmarks like the Livermore Loops and later the more enduring LINPACK metric – and its related TOP500 list – widely adopted, frequently executed, and frankly over quoted. But at least for most of these earlier generations, the benchmarks were grounded in a broad base of typical HPC workloads. And while the race may not have always gone to the swift, everyone was at least running in the same direction.

Bob Sorensen, IDC

For the exascale race, that is simply no longer the case. The profusion of new and evolving HPC use cases, applications, and related architectures that are all being collectively jammed under the exascale umbrella makes that impossible. A few examples here should suffice:

High performance data analytics is a legitimate and growing segment of the HPC universe, but there the rapid growth of data sets, the addition of new unstructured data such as voice, video, and IoT input, and the need for real-time analytics clearly trump pure processor speed. Performance metrics for HPDA applications abound, but the most relevant simply do not pin their hopes on floating point rates. In addition, an interesting force behind the evolution of HPDA development will be growing legions of traditional – and decidedly non-HPC – business analytics users who are being pushed into the HPDA realm due to the spate of new business opportunities in this space. This group has little interest in the future of HPC as a technological driver and simply wants whatever solves the problem.

Likewise, deep learning is one of the latest and most promising HPC use cases, but there, training applications typically involve long but relatively straightforward computations – indeed often using only 16-bit floating point – to extract insights from data. These systems rely on more simple but high-core count processors with less rigorous capabilities in memory and bandwidth. As such, deep learning systems are well suited to win their version of the exascale race, but it is clear that such systems will not become the sine qua non for all exascale applications.

Large servers that sit in hyperscale data centers likely will also soon be able to lay claim to being exascale systems in that they possess the aggregate processing power and necessary network capability to meet the definition. This is an undeniable effect of the use of mass clustered COT-like systems to achieve high computational capability, but in most cases it is safe to conclude that these exascale systems will not be used as a single user asset but instead be routinely partitioned across very many users: they may benchmark as exascale, but they will not be used as exascale.

Even within the traditional HPC modeling and simulation sector, users are increasingly turning to more sophisticated metrics for what they want out of an exascale HPC, such as efficiency (flops/watt), or data center space requirements (flops/rack). Likewise, more and more exascale plans cite the need for new machines to achieve not peak exascale, but sustained exascale on typical workloads, and even specific improvements in time to solution for an existing suite of applications. The intent of many of these new progressive requirements is to push the emphasis of exascale architectures away from pure computational performance and to instead highlight the need for a more comprehensive hardware and software ecosystem that can underwrite an effective exascale workflow. In such environments, the exascale goal means more about overall system solution value and utility than any single hardware or software metric.

Because there are so many paths to an exascale system, the field will over the next few years be filled with announcements of a first, second, and eventually an nth exascale rollout. Careful examination of what finish line each machine crossed can only help to provide insights as to what the true value of that system is and how effectively it adds to the body of knowledge within the HPC world. Each new system will no doubt serve a valuable function in its own right, but it is clear that the sector has moved beyond a one size fits all mentality, and that decision makers – both within the commercial and government sectors – need to remember this when making plans about new HPC developments, at least until the next triple in scientific notation comes along. That would be zettaflops.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC21 Cluster Competition Bracketology

June 18, 2021

For the first time ever, cluster competition experts have gathered together for an actual seeding reveal for the ISC21 Student Cluster Competition. What’s this, you ask? It’s where bona fide student cluster competi Read more…

OSC Enables On-Demand HPC for Automotive Engineering Firm

June 18, 2021

In motorsports, vehicle designers are constantly looking for the tiniest sliver of time to shave off through some clever piece of engineering – but as the low-hanging fruit gets snatched up, those advances are getting Read more…

PNNL Researchers Unveil Tool to Accelerate CGRA Development

June 18, 2021

Moore’s law is in decline due to the physical limits of transistor chips, putting an expiration date on a hitherto-perennial exponential trend in computing power – and leaving hardware developers scrambling to contin Read more…

TU Wien Announces VSC-5, Austria’s Most Powerful Supercomputer

June 17, 2021

Austria is getting a new top supercomputer: VSC-5, the latest iteration of the Vienna Scientific Cluster. The news was announced by VSC-5’s soon-to-be home, TU Wien (also known as the Vienna University of Technology). Read more…

Supercomputing Helps Advance Hydrogen Energy Research

June 16, 2021

Hydrogen energy has long remained an elusive target of the renewable energy industry, promising clean, carbon-free energy that would allow for rapid refueling, unlike current battery-based electric vehicles. Hydrogen-bas Read more…

AWS Solution Channel

Accelerating research and development for new medical treatments

Today, more than 290,000 researchers in France are working to provide better support and care for patients through modern medical treatment. To fulfill their mission, these researchers must be equipped with powerful tools. Read more…

FF4EuroHPC Initiative Highlights Results of First Open Call

June 16, 2021

EuroHPC is kicking into high gear, with seven of its first eight systems detailed – and one of them already operational. While the systems are, perhaps, the flashiest endeavor of the European Commission’s HPC effort, Read more…

TU Wien Announces VSC-5, Austria’s Most Powerful Supercomputer

June 17, 2021

Austria is getting a new top supercomputer: VSC-5, the latest iteration of the Vienna Scientific Cluster. The news was announced by VSC-5’s soon-to-be home, T Read more…

Catching up with ISC 2021 Digital Program Chair Martin Schulz

June 16, 2021

Leibniz Research Centre (LRZ)’s content creator Susanne Vieser interviews ISC 2021 Digital Program Chair, Prof. Martin Schulz to gain an understanding of his ISC affiliation, which is outside his usual scope of work at the research center and the Technical University of Munich. Read more…

Intel Debuts ‘Infrastructure Processing Unit’ as Part of Broader XPU Strategy

June 15, 2021

To boost the performance of busy CPUs hosted by cloud service providers, Intel Corp. has launched a new line of Infrastructure Processing Units (IPUs) that take Read more…

ISC Keynote: Glimpse into Microsoft’s View of the Quantum Computing Landscape

June 15, 2021

Looking for a dose of reality and realistic optimism about quantum computing? Matthias Troyer, Microsoft distinguished scientist, plans to do just that in his ISC2021 keynote in two weeks – Quantum Computing: From Academic Research to Real-world Applications. He notes wryly that classical... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers


10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from I Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

  • arrow
  • Click Here for More Headlines
  • arrow