IDC: Will the Real Exascale Race Please Stand Up?

By Bob Sorensen, IDC

February 21, 2017

 

Editor’s note: In this commentary, Bob Sorensen, research vice president, IDC High Performance Computing group, argues it’s clear we’ll get to exascale soon, but it’s hardly clear exactly what that will look like. In fact, says Sorensen, there will likely be several flavors of exascale, each favoring different applications and different technologies.

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Meanwhile commercial concerns, either working in conjunction with a government partner, or going it alone, are also looking at similar development agendas. So it’s a pretty safe bet that someone will stand up an exascale system in the next few years. Some will celebrate while others will gnash their teeth. So while we can all agree that there is an exascale race, based on a look at the various visions for such a system, most seem to have their own idea of where the finish line is.

In the past when the HPC community went through its periodic assault on computer performance expressed in scientific notation (gflops, tflops, pflops, etc.), HPC systems had relatively narrow use cases, and computation capability – the ability to churn floating point operations was the undisputed king of performance metrics. That’s what made benchmarks like the Livermore Loops and later the more enduring LINPACK metric – and its related TOP500 list – widely adopted, frequently executed, and frankly over quoted. But at least for most of these earlier generations, the benchmarks were grounded in a broad base of typical HPC workloads. And while the race may not have always gone to the swift, everyone was at least running in the same direction.

Bob Sorensen, IDC

For the exascale race, that is simply no longer the case. The profusion of new and evolving HPC use cases, applications, and related architectures that are all being collectively jammed under the exascale umbrella makes that impossible. A few examples here should suffice:

High performance data analytics is a legitimate and growing segment of the HPC universe, but there the rapid growth of data sets, the addition of new unstructured data such as voice, video, and IoT input, and the need for real-time analytics clearly trump pure processor speed. Performance metrics for HPDA applications abound, but the most relevant simply do not pin their hopes on floating point rates. In addition, an interesting force behind the evolution of HPDA development will be growing legions of traditional – and decidedly non-HPC – business analytics users who are being pushed into the HPDA realm due to the spate of new business opportunities in this space. This group has little interest in the future of HPC as a technological driver and simply wants whatever solves the problem.

Likewise, deep learning is one of the latest and most promising HPC use cases, but there, training applications typically involve long but relatively straightforward computations – indeed often using only 16-bit floating point – to extract insights from data. These systems rely on more simple but high-core count processors with less rigorous capabilities in memory and bandwidth. As such, deep learning systems are well suited to win their version of the exascale race, but it is clear that such systems will not become the sine qua non for all exascale applications.

Large servers that sit in hyperscale data centers likely will also soon be able to lay claim to being exascale systems in that they possess the aggregate processing power and necessary network capability to meet the definition. This is an undeniable effect of the use of mass clustered COT-like systems to achieve high computational capability, but in most cases it is safe to conclude that these exascale systems will not be used as a single user asset but instead be routinely partitioned across very many users: they may benchmark as exascale, but they will not be used as exascale.

Even within the traditional HPC modeling and simulation sector, users are increasingly turning to more sophisticated metrics for what they want out of an exascale HPC, such as efficiency (flops/watt), or data center space requirements (flops/rack). Likewise, more and more exascale plans cite the need for new machines to achieve not peak exascale, but sustained exascale on typical workloads, and even specific improvements in time to solution for an existing suite of applications. The intent of many of these new progressive requirements is to push the emphasis of exascale architectures away from pure computational performance and to instead highlight the need for a more comprehensive hardware and software ecosystem that can underwrite an effective exascale workflow. In such environments, the exascale goal means more about overall system solution value and utility than any single hardware or software metric.

Because there are so many paths to an exascale system, the field will over the next few years be filled with announcements of a first, second, and eventually an nth exascale rollout. Careful examination of what finish line each machine crossed can only help to provide insights as to what the true value of that system is and how effectively it adds to the body of knowledge within the HPC world. Each new system will no doubt serve a valuable function in its own right, but it is clear that the sector has moved beyond a one size fits all mentality, and that decision makers – both within the commercial and government sectors – need to remember this when making plans about new HPC developments, at least until the next triple in scientific notation comes along. That would be zettaflops.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

Dell Strikes Reseller Deal with Atos; Supplants SGI

August 22, 2017

Dell EMC and Atos announced a reseller deal today in which Dell will offer Atos’ high-end 8- and 16-socket Bullion servers. Some move from Dell had been expected following Hewlett Packard Enterprise’s purchase of SGI Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This