Rethinking HPC Platforms for ‘Second Gen’ Applications

By John Russell

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. A new paper posted last week on arXiv.org – Rethinking HPC Platforms: Challenges, Opportunities and Recommendations – by researchers from the University of Edinburgh and University of St. Andrews suggests the emergence of “second generation” HPC applications (and users) requires a new approach to supporting infrastructure that draws on container-like technology and services.

(Lead author Ole Weidner spoke with HPCwire after this article was first published and discussed further how it relates to other HPC container efforts. Please see the addendum at the end of the article for his additional comments.)

In the paper they describe a set of services, which they call ‘cHPC’ (container HPC), to accommodate these emerging HPC application requirements and indicate they plan to benchmark key applications as a next step. “Many of the emerging second generation HPC applications move beyond tightly-coupled, compute-centric methods and algorithms and embrace more heterogeneous, multi-component workflows, dynamic and ad-hoc computation and data-centric methodologies,” write authors Ole Weidner, Rosa Filgueira Vicente, Malcolm Atkinson, and Adam Barker.

“While diverging from the traditional HPC application profile, many of these applications still rely on the large number of tightly coupled cores, cutting-edge hardware and advanced interconnect topologies provided only by HPC clusters. Consequently, HPC platform providers often find themselves faced with requirements and requests that are so diverse and dynamic that they become increasingly difficult to fulfill efficiently within the current operational policies and platform models.”

It’s best to read the paper in full which examines in some detail the challenges and potential solutions. The authors single out three applications areas and report that as a group they have deep experience working with them:

  • Data Intensive Applications. Data-intensive applications require large volumes of data and devote a large fraction of their execution time to I/O and manipulation of data. Careful attention to data handling is necessary to achieve acceptable performance or completion. “They are frequently sensitive to local storage for intermediate results and reference data. It is also sensitive to the data-intensive frameworks and workflow systems available on the platform and to the proximity of data it uses.” Examples of large-scale, data-intensive HPC applications are seismic noise cross-correlation and misfit calculation as encountered, e.g. in the VERCE project.
  • Dynamic Applications. These fall into two broad categories: “applications for which we do not have full understanding of the runtime behavior and resource requirements prior to execution and (ii) applications which can change their runtime behavior and resource requirements during execution.” Two examples cited are: (a) applications that use ensemble Kalman-Filters for data assimilation in forecasting, (b) simulations that use adaptive mesh refinement (AMR) to refine the accuracy of their solutions.
  • Federated applications. “Based on the idea that federation fosters collaboration and allows scalability beyond a single platform, policies and funding schemes explicitly supporting the development of concepts and technology for HPC federations have been put into place. Larger federations of HPC platforms are XSEDE in the US, and the PRACE in the EU. Both platforms provide access to several TOP-500 ranked HPC clusters and an array of smaller and experimental platforms.”

“To explore the implementation options for our new platform model, we have developed cHPC, a set of operating-system level services and APIs that can run alongside and integrate with existing job via Linux containers (LXC) to pro- vide isolated, user-deployed application environment containers, application introspection and resource throttling via the cgroups kernel extension. The LXC runtime and software-defined networking are provided by Docker and run as OS services on the compute nodes,” say the authors. (see figure 2 from the papers shown here)

The authors note prominently in their discussion that many traditional HPC applications are still best served by traditional HPC environments for which they have been carefully coupled.

“It would be false to claim that current production HPC platforms fail to meet the requirements of their application communities. It would be equally wrong to claim that the existing platform model is a pervasive problem that generally stalls the innovation and productivity of HPC applications…[There are] significant classes of applications, often from the monolithic, tightly-coupled parallel realm, [that] have few concerns regarding the issues out-lined in this paper…They are the original tenants and drivers of HPC and have an effective social and technical symbiosis with their platform environments.

“However, it is equally important to understand that other classes of applications (that we call second generation applications) and their respective user communities share a less rosy perspective. These second generation applications are typically non-monolithic, dynamic in terms of their runtime behavior and resource requirements, or based on higher-level tools and frameworks that manage compute, data and communication. Some of them actively explore new compute and data handling paradigms, and operate in a larger, federated context that spans multiple, distributed HPC clusters.”

To qualify and quantify their assumptions, the authors report they are in the process of designing a survey that will be sent out to platform providers and application groups to verify current issues on a broader and larger scale. They write, “The main focus of our work will be on the further evaluation of our prototype system. We are working on a ‘bare metal’ deployment on HPC cluster hardware at EPCC. This will allow us to carry out detailed measurements and benchmarks to analyze the overhead and scalability of our approach. We will also engage with computational science groups working on second generation applications to explore their real-life application in the context of cHPC.”

Link to paper (Rethinking HPC Platforms: Challenges, Opportunities and Recommendations): https://arxiv.org/pdf/1702.05513.pdf

Addendum (3/1/17):

The authors are well aware of the many ongoing efforts to leverage container technology for HPC. Lead author Weidner told HPCwire, “I am familiar with the work on Singularity that Gregory Kurtzer and his peers at LBNL are doing. It is a prominent project with quite significant real-world uptake and definitely needs to be, along with a few others, added to the related work section in the next iteration of our paper.

“We can definitely observe that over the past year, operating-system level virtualization and containers have become more and more common place in HPC application and middleware stacks, especially in projects that rely on, or support what we call “second gen.” applications. Take Cornell’s BioHPC Lab (https://cbsu.tc.cornell.edu/lab/lab.aspx) for example, or NERSC’s Shifter (http://www.nersc.gov/users/software/using-shifter-and-docker/using-shifter-at-nersc/). I think with Singularity leading the way, the objective of most of these projects is to address what we refer to as the “centralized (software) deployment monopolies” and “application mobility” in our paper.

The scope for cHPC tries to be a bit broader, says Weidner. “First of all, unlike Singularity, cHPC is not production-grade software. It is a research prototype. Having said that, the vision of cHPC and the conceptual work we are doing around it is not just to encapsulate (end-)user applications but to incorporate more low-level HPC system components. Our aim is to develop blueprints for more “data-driven” HPC environments in which application adaptivity, elastic scalability and resilience strategies are supported explicitly by the platform.

“We believe that a data-driven HPC software stack is one of the critical, but still missing components to address the upcoming exascale application challenges in which real-time predictive operational analytics will play an important role to support resilience and efficiency at extreme scales. Containers are an excellent vehicle to research these new data-data driven system and application architectures without having to implement an entire HPC system from scratch. That’s why we have developed cHPC.”

Weidner and his colleagues are working on a paper in which we lay out a comprehensive framework for operational data management in HPC systems (“Data-Driven HPC”).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This