Rethinking HPC Platforms for ‘Second Gen’ Applications

By John Russell

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. A new paper posted last week on arXiv.org – Rethinking HPC Platforms: Challenges, Opportunities and Recommendations – by researchers from the University of Edinburgh and University of St. Andrews suggests the emergence of “second generation” HPC applications (and users) requires a new approach to supporting infrastructure that draws on container-like technology and services.

(Lead author Ole Weidner spoke with HPCwire after this article was first published and discussed further how it relates to other HPC container efforts. Please see the addendum at the end of the article for his additional comments.)

In the paper they describe a set of services, which they call ‘cHPC’ (container HPC), to accommodate these emerging HPC application requirements and indicate they plan to benchmark key applications as a next step. “Many of the emerging second generation HPC applications move beyond tightly-coupled, compute-centric methods and algorithms and embrace more heterogeneous, multi-component workflows, dynamic and ad-hoc computation and data-centric methodologies,” write authors Ole Weidner, Rosa Filgueira Vicente, Malcolm Atkinson, and Adam Barker.

“While diverging from the traditional HPC application profile, many of these applications still rely on the large number of tightly coupled cores, cutting-edge hardware and advanced interconnect topologies provided only by HPC clusters. Consequently, HPC platform providers often find themselves faced with requirements and requests that are so diverse and dynamic that they become increasingly difficult to fulfill efficiently within the current operational policies and platform models.”

It’s best to read the paper in full which examines in some detail the challenges and potential solutions. The authors single out three applications areas and report that as a group they have deep experience working with them:

  • Data Intensive Applications. Data-intensive applications require large volumes of data and devote a large fraction of their execution time to I/O and manipulation of data. Careful attention to data handling is necessary to achieve acceptable performance or completion. “They are frequently sensitive to local storage for intermediate results and reference data. It is also sensitive to the data-intensive frameworks and workflow systems available on the platform and to the proximity of data it uses.” Examples of large-scale, data-intensive HPC applications are seismic noise cross-correlation and misfit calculation as encountered, e.g. in the VERCE project.
  • Dynamic Applications. These fall into two broad categories: “applications for which we do not have full understanding of the runtime behavior and resource requirements prior to execution and (ii) applications which can change their runtime behavior and resource requirements during execution.” Two examples cited are: (a) applications that use ensemble Kalman-Filters for data assimilation in forecasting, (b) simulations that use adaptive mesh refinement (AMR) to refine the accuracy of their solutions.
  • Federated applications. “Based on the idea that federation fosters collaboration and allows scalability beyond a single platform, policies and funding schemes explicitly supporting the development of concepts and technology for HPC federations have been put into place. Larger federations of HPC platforms are XSEDE in the US, and the PRACE in the EU. Both platforms provide access to several TOP-500 ranked HPC clusters and an array of smaller and experimental platforms.”

“To explore the implementation options for our new platform model, we have developed cHPC, a set of operating-system level services and APIs that can run alongside and integrate with existing job via Linux containers (LXC) to pro- vide isolated, user-deployed application environment containers, application introspection and resource throttling via the cgroups kernel extension. The LXC runtime and software-defined networking are provided by Docker and run as OS services on the compute nodes,” say the authors. (see figure 2 from the papers shown here)

The authors note prominently in their discussion that many traditional HPC applications are still best served by traditional HPC environments for which they have been carefully coupled.

“It would be false to claim that current production HPC platforms fail to meet the requirements of their application communities. It would be equally wrong to claim that the existing platform model is a pervasive problem that generally stalls the innovation and productivity of HPC applications…[There are] significant classes of applications, often from the monolithic, tightly-coupled parallel realm, [that] have few concerns regarding the issues out-lined in this paper…They are the original tenants and drivers of HPC and have an effective social and technical symbiosis with their platform environments.

“However, it is equally important to understand that other classes of applications (that we call second generation applications) and their respective user communities share a less rosy perspective. These second generation applications are typically non-monolithic, dynamic in terms of their runtime behavior and resource requirements, or based on higher-level tools and frameworks that manage compute, data and communication. Some of them actively explore new compute and data handling paradigms, and operate in a larger, federated context that spans multiple, distributed HPC clusters.”

To qualify and quantify their assumptions, the authors report they are in the process of designing a survey that will be sent out to platform providers and application groups to verify current issues on a broader and larger scale. They write, “The main focus of our work will be on the further evaluation of our prototype system. We are working on a ‘bare metal’ deployment on HPC cluster hardware at EPCC. This will allow us to carry out detailed measurements and benchmarks to analyze the overhead and scalability of our approach. We will also engage with computational science groups working on second generation applications to explore their real-life application in the context of cHPC.”

Link to paper (Rethinking HPC Platforms: Challenges, Opportunities and Recommendations): https://arxiv.org/pdf/1702.05513.pdf

Addendum (3/1/17):

The authors are well aware of the many ongoing efforts to leverage container technology for HPC. Lead author Weidner told HPCwire, “I am familiar with the work on Singularity that Gregory Kurtzer and his peers at LBNL are doing. It is a prominent project with quite significant real-world uptake and definitely needs to be, along with a few others, added to the related work section in the next iteration of our paper.

“We can definitely observe that over the past year, operating-system level virtualization and containers have become more and more common place in HPC application and middleware stacks, especially in projects that rely on, or support what we call “second gen.” applications. Take Cornell’s BioHPC Lab (https://cbsu.tc.cornell.edu/lab/lab.aspx) for example, or NERSC’s Shifter (http://www.nersc.gov/users/software/using-shifter-and-docker/using-shifter-at-nersc/). I think with Singularity leading the way, the objective of most of these projects is to address what we refer to as the “centralized (software) deployment monopolies” and “application mobility” in our paper.

The scope for cHPC tries to be a bit broader, says Weidner. “First of all, unlike Singularity, cHPC is not production-grade software. It is a research prototype. Having said that, the vision of cHPC and the conceptual work we are doing around it is not just to encapsulate (end-)user applications but to incorporate more low-level HPC system components. Our aim is to develop blueprints for more “data-driven” HPC environments in which application adaptivity, elastic scalability and resilience strategies are supported explicitly by the platform.

“We believe that a data-driven HPC software stack is one of the critical, but still missing components to address the upcoming exascale application challenges in which real-time predictive operational analytics will play an important role to support resilience and efficiency at extreme scales. Containers are an excellent vehicle to research these new data-data driven system and application architectures without having to implement an entire HPC system from scratch. That’s why we have developed cHPC.”

Weidner and his colleagues are working on a paper in which we lay out a comprehensive framework for operational data management in HPC systems (“Data-Driven HPC”).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This