Rethinking HPC Platforms for ‘Second Gen’ Applications

By John Russell

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. A new paper posted last week on arXiv.org – Rethinking HPC Platforms: Challenges, Opportunities and Recommendations – by researchers from the University of Edinburgh and University of St. Andrews suggests the emergence of “second generation” HPC applications (and users) requires a new approach to supporting infrastructure that draws on container-like technology and services.

(Lead author Ole Weidner spoke with HPCwire after this article was first published and discussed further how it relates to other HPC container efforts. Please see the addendum at the end of the article for his additional comments.)

In the paper they describe a set of services, which they call ‘cHPC’ (container HPC), to accommodate these emerging HPC application requirements and indicate they plan to benchmark key applications as a next step. “Many of the emerging second generation HPC applications move beyond tightly-coupled, compute-centric methods and algorithms and embrace more heterogeneous, multi-component workflows, dynamic and ad-hoc computation and data-centric methodologies,” write authors Ole Weidner, Rosa Filgueira Vicente, Malcolm Atkinson, and Adam Barker.

“While diverging from the traditional HPC application profile, many of these applications still rely on the large number of tightly coupled cores, cutting-edge hardware and advanced interconnect topologies provided only by HPC clusters. Consequently, HPC platform providers often find themselves faced with requirements and requests that are so diverse and dynamic that they become increasingly difficult to fulfill efficiently within the current operational policies and platform models.”

It’s best to read the paper in full which examines in some detail the challenges and potential solutions. The authors single out three applications areas and report that as a group they have deep experience working with them:

  • Data Intensive Applications. Data-intensive applications require large volumes of data and devote a large fraction of their execution time to I/O and manipulation of data. Careful attention to data handling is necessary to achieve acceptable performance or completion. “They are frequently sensitive to local storage for intermediate results and reference data. It is also sensitive to the data-intensive frameworks and workflow systems available on the platform and to the proximity of data it uses.” Examples of large-scale, data-intensive HPC applications are seismic noise cross-correlation and misfit calculation as encountered, e.g. in the VERCE project.
  • Dynamic Applications. These fall into two broad categories: “applications for which we do not have full understanding of the runtime behavior and resource requirements prior to execution and (ii) applications which can change their runtime behavior and resource requirements during execution.” Two examples cited are: (a) applications that use ensemble Kalman-Filters for data assimilation in forecasting, (b) simulations that use adaptive mesh refinement (AMR) to refine the accuracy of their solutions.
  • Federated applications. “Based on the idea that federation fosters collaboration and allows scalability beyond a single platform, policies and funding schemes explicitly supporting the development of concepts and technology for HPC federations have been put into place. Larger federations of HPC platforms are XSEDE in the US, and the PRACE in the EU. Both platforms provide access to several TOP-500 ranked HPC clusters and an array of smaller and experimental platforms.”

“To explore the implementation options for our new platform model, we have developed cHPC, a set of operating-system level services and APIs that can run alongside and integrate with existing job via Linux containers (LXC) to pro- vide isolated, user-deployed application environment containers, application introspection and resource throttling via the cgroups kernel extension. The LXC runtime and software-defined networking are provided by Docker and run as OS services on the compute nodes,” say the authors. (see figure 2 from the papers shown here)

The authors note prominently in their discussion that many traditional HPC applications are still best served by traditional HPC environments for which they have been carefully coupled.

“It would be false to claim that current production HPC platforms fail to meet the requirements of their application communities. It would be equally wrong to claim that the existing platform model is a pervasive problem that generally stalls the innovation and productivity of HPC applications…[There are] significant classes of applications, often from the monolithic, tightly-coupled parallel realm, [that] have few concerns regarding the issues out-lined in this paper…They are the original tenants and drivers of HPC and have an effective social and technical symbiosis with their platform environments.

“However, it is equally important to understand that other classes of applications (that we call second generation applications) and their respective user communities share a less rosy perspective. These second generation applications are typically non-monolithic, dynamic in terms of their runtime behavior and resource requirements, or based on higher-level tools and frameworks that manage compute, data and communication. Some of them actively explore new compute and data handling paradigms, and operate in a larger, federated context that spans multiple, distributed HPC clusters.”

To qualify and quantify their assumptions, the authors report they are in the process of designing a survey that will be sent out to platform providers and application groups to verify current issues on a broader and larger scale. They write, “The main focus of our work will be on the further evaluation of our prototype system. We are working on a ‘bare metal’ deployment on HPC cluster hardware at EPCC. This will allow us to carry out detailed measurements and benchmarks to analyze the overhead and scalability of our approach. We will also engage with computational science groups working on second generation applications to explore their real-life application in the context of cHPC.”

Link to paper (Rethinking HPC Platforms: Challenges, Opportunities and Recommendations): https://arxiv.org/pdf/1702.05513.pdf

Addendum (3/1/17):

The authors are well aware of the many ongoing efforts to leverage container technology for HPC. Lead author Weidner told HPCwire, “I am familiar with the work on Singularity that Gregory Kurtzer and his peers at LBNL are doing. It is a prominent project with quite significant real-world uptake and definitely needs to be, along with a few others, added to the related work section in the next iteration of our paper.

“We can definitely observe that over the past year, operating-system level virtualization and containers have become more and more common place in HPC application and middleware stacks, especially in projects that rely on, or support what we call “second gen.” applications. Take Cornell’s BioHPC Lab (https://cbsu.tc.cornell.edu/lab/lab.aspx) for example, or NERSC’s Shifter (http://www.nersc.gov/users/software/using-shifter-and-docker/using-shifter-at-nersc/). I think with Singularity leading the way, the objective of most of these projects is to address what we refer to as the “centralized (software) deployment monopolies” and “application mobility” in our paper.

The scope for cHPC tries to be a bit broader, says Weidner. “First of all, unlike Singularity, cHPC is not production-grade software. It is a research prototype. Having said that, the vision of cHPC and the conceptual work we are doing around it is not just to encapsulate (end-)user applications but to incorporate more low-level HPC system components. Our aim is to develop blueprints for more “data-driven” HPC environments in which application adaptivity, elastic scalability and resilience strategies are supported explicitly by the platform.

“We believe that a data-driven HPC software stack is one of the critical, but still missing components to address the upcoming exascale application challenges in which real-time predictive operational analytics will play an important role to support resilience and efficiency at extreme scales. Containers are an excellent vehicle to research these new data-data driven system and application architectures without having to implement an entire HPC system from scratch. That’s why we have developed cHPC.”

Weidner and his colleagues are working on a paper in which we lay out a comprehensive framework for operational data management in HPC systems (“Data-Driven HPC”).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Research Scales to 11,400 Cores for EDA

August 5, 2021

For many HPC users, their needs are not evenly distributed throughout a year: some might need few – if any – resources for months, then they might need a very large system for a week. For those kinds of users, large Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learned from more than 100 years of combined experience. While it Read more…

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learn Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire