Rethinking HPC Platforms for ‘Second Gen’ Applications

By John Russell

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. A new paper posted last week on arXiv.org – Rethinking HPC Platforms: Challenges, Opportunities and Recommendations – by researchers from the University of Edinburgh and University of St. Andrews suggests the emergence of “second generation” HPC applications (and users) requires a new approach to supporting infrastructure that draws on container-like technology and services.

(Lead author Ole Weidner spoke with HPCwire after this article was first published and discussed further how it relates to other HPC container efforts. Please see the addendum at the end of the article for his additional comments.)

In the paper they describe a set of services, which they call ‘cHPC’ (container HPC), to accommodate these emerging HPC application requirements and indicate they plan to benchmark key applications as a next step. “Many of the emerging second generation HPC applications move beyond tightly-coupled, compute-centric methods and algorithms and embrace more heterogeneous, multi-component workflows, dynamic and ad-hoc computation and data-centric methodologies,” write authors Ole Weidner, Rosa Filgueira Vicente, Malcolm Atkinson, and Adam Barker.

“While diverging from the traditional HPC application profile, many of these applications still rely on the large number of tightly coupled cores, cutting-edge hardware and advanced interconnect topologies provided only by HPC clusters. Consequently, HPC platform providers often find themselves faced with requirements and requests that are so diverse and dynamic that they become increasingly difficult to fulfill efficiently within the current operational policies and platform models.”

It’s best to read the paper in full which examines in some detail the challenges and potential solutions. The authors single out three applications areas and report that as a group they have deep experience working with them:

  • Data Intensive Applications. Data-intensive applications require large volumes of data and devote a large fraction of their execution time to I/O and manipulation of data. Careful attention to data handling is necessary to achieve acceptable performance or completion. “They are frequently sensitive to local storage for intermediate results and reference data. It is also sensitive to the data-intensive frameworks and workflow systems available on the platform and to the proximity of data it uses.” Examples of large-scale, data-intensive HPC applications are seismic noise cross-correlation and misfit calculation as encountered, e.g. in the VERCE project.
  • Dynamic Applications. These fall into two broad categories: “applications for which we do not have full understanding of the runtime behavior and resource requirements prior to execution and (ii) applications which can change their runtime behavior and resource requirements during execution.” Two examples cited are: (a) applications that use ensemble Kalman-Filters for data assimilation in forecasting, (b) simulations that use adaptive mesh refinement (AMR) to refine the accuracy of their solutions.
  • Federated applications. “Based on the idea that federation fosters collaboration and allows scalability beyond a single platform, policies and funding schemes explicitly supporting the development of concepts and technology for HPC federations have been put into place. Larger federations of HPC platforms are XSEDE in the US, and the PRACE in the EU. Both platforms provide access to several TOP-500 ranked HPC clusters and an array of smaller and experimental platforms.”

“To explore the implementation options for our new platform model, we have developed cHPC, a set of operating-system level services and APIs that can run alongside and integrate with existing job via Linux containers (LXC) to pro- vide isolated, user-deployed application environment containers, application introspection and resource throttling via the cgroups kernel extension. The LXC runtime and software-defined networking are provided by Docker and run as OS services on the compute nodes,” say the authors. (see figure 2 from the papers shown here)

The authors note prominently in their discussion that many traditional HPC applications are still best served by traditional HPC environments for which they have been carefully coupled.

“It would be false to claim that current production HPC platforms fail to meet the requirements of their application communities. It would be equally wrong to claim that the existing platform model is a pervasive problem that generally stalls the innovation and productivity of HPC applications…[There are] significant classes of applications, often from the monolithic, tightly-coupled parallel realm, [that] have few concerns regarding the issues out-lined in this paper…They are the original tenants and drivers of HPC and have an effective social and technical symbiosis with their platform environments.

“However, it is equally important to understand that other classes of applications (that we call second generation applications) and their respective user communities share a less rosy perspective. These second generation applications are typically non-monolithic, dynamic in terms of their runtime behavior and resource requirements, or based on higher-level tools and frameworks that manage compute, data and communication. Some of them actively explore new compute and data handling paradigms, and operate in a larger, federated context that spans multiple, distributed HPC clusters.”

To qualify and quantify their assumptions, the authors report they are in the process of designing a survey that will be sent out to platform providers and application groups to verify current issues on a broader and larger scale. They write, “The main focus of our work will be on the further evaluation of our prototype system. We are working on a ‘bare metal’ deployment on HPC cluster hardware at EPCC. This will allow us to carry out detailed measurements and benchmarks to analyze the overhead and scalability of our approach. We will also engage with computational science groups working on second generation applications to explore their real-life application in the context of cHPC.”

Link to paper (Rethinking HPC Platforms: Challenges, Opportunities and Recommendations): https://arxiv.org/pdf/1702.05513.pdf

Addendum (3/1/17):

The authors are well aware of the many ongoing efforts to leverage container technology for HPC. Lead author Weidner told HPCwire, “I am familiar with the work on Singularity that Gregory Kurtzer and his peers at LBNL are doing. It is a prominent project with quite significant real-world uptake and definitely needs to be, along with a few others, added to the related work section in the next iteration of our paper.

“We can definitely observe that over the past year, operating-system level virtualization and containers have become more and more common place in HPC application and middleware stacks, especially in projects that rely on, or support what we call “second gen.” applications. Take Cornell’s BioHPC Lab (https://cbsu.tc.cornell.edu/lab/lab.aspx) for example, or NERSC’s Shifter (http://www.nersc.gov/users/software/using-shifter-and-docker/using-shifter-at-nersc/). I think with Singularity leading the way, the objective of most of these projects is to address what we refer to as the “centralized (software) deployment monopolies” and “application mobility” in our paper.

The scope for cHPC tries to be a bit broader, says Weidner. “First of all, unlike Singularity, cHPC is not production-grade software. It is a research prototype. Having said that, the vision of cHPC and the conceptual work we are doing around it is not just to encapsulate (end-)user applications but to incorporate more low-level HPC system components. Our aim is to develop blueprints for more “data-driven” HPC environments in which application adaptivity, elastic scalability and resilience strategies are supported explicitly by the platform.

“We believe that a data-driven HPC software stack is one of the critical, but still missing components to address the upcoming exascale application challenges in which real-time predictive operational analytics will play an important role to support resilience and efficiency at extreme scales. Containers are an excellent vehicle to research these new data-data driven system and application architectures without having to implement an entire HPC system from scratch. That’s why we have developed cHPC.”

Weidner and his colleagues are working on a paper in which we lay out a comprehensive framework for operational data management in HPC systems (“Data-Driven HPC”).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire