Rethinking HPC Platforms for ‘Second Gen’ Applications

By John Russell

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. A new paper posted last week on arXiv.org – Rethinking HPC Platforms: Challenges, Opportunities and Recommendations – by researchers from the University of Edinburgh and University of St. Andrews suggests the emergence of “second generation” HPC applications (and users) requires a new approach to supporting infrastructure that draws on container-like technology and services.

(Lead author Ole Weidner spoke with HPCwire after this article was first published and discussed further how it relates to other HPC container efforts. Please see the addendum at the end of the article for his additional comments.)

In the paper they describe a set of services, which they call ‘cHPC’ (container HPC), to accommodate these emerging HPC application requirements and indicate they plan to benchmark key applications as a next step. “Many of the emerging second generation HPC applications move beyond tightly-coupled, compute-centric methods and algorithms and embrace more heterogeneous, multi-component workflows, dynamic and ad-hoc computation and data-centric methodologies,” write authors Ole Weidner, Rosa Filgueira Vicente, Malcolm Atkinson, and Adam Barker.

“While diverging from the traditional HPC application profile, many of these applications still rely on the large number of tightly coupled cores, cutting-edge hardware and advanced interconnect topologies provided only by HPC clusters. Consequently, HPC platform providers often find themselves faced with requirements and requests that are so diverse and dynamic that they become increasingly difficult to fulfill efficiently within the current operational policies and platform models.”

It’s best to read the paper in full which examines in some detail the challenges and potential solutions. The authors single out three applications areas and report that as a group they have deep experience working with them:

  • Data Intensive Applications. Data-intensive applications require large volumes of data and devote a large fraction of their execution time to I/O and manipulation of data. Careful attention to data handling is necessary to achieve acceptable performance or completion. “They are frequently sensitive to local storage for intermediate results and reference data. It is also sensitive to the data-intensive frameworks and workflow systems available on the platform and to the proximity of data it uses.” Examples of large-scale, data-intensive HPC applications are seismic noise cross-correlation and misfit calculation as encountered, e.g. in the VERCE project.
  • Dynamic Applications. These fall into two broad categories: “applications for which we do not have full understanding of the runtime behavior and resource requirements prior to execution and (ii) applications which can change their runtime behavior and resource requirements during execution.” Two examples cited are: (a) applications that use ensemble Kalman-Filters for data assimilation in forecasting, (b) simulations that use adaptive mesh refinement (AMR) to refine the accuracy of their solutions.
  • Federated applications. “Based on the idea that federation fosters collaboration and allows scalability beyond a single platform, policies and funding schemes explicitly supporting the development of concepts and technology for HPC federations have been put into place. Larger federations of HPC platforms are XSEDE in the US, and the PRACE in the EU. Both platforms provide access to several TOP-500 ranked HPC clusters and an array of smaller and experimental platforms.”

“To explore the implementation options for our new platform model, we have developed cHPC, a set of operating-system level services and APIs that can run alongside and integrate with existing job via Linux containers (LXC) to pro- vide isolated, user-deployed application environment containers, application introspection and resource throttling via the cgroups kernel extension. The LXC runtime and software-defined networking are provided by Docker and run as OS services on the compute nodes,” say the authors. (see figure 2 from the papers shown here)

The authors note prominently in their discussion that many traditional HPC applications are still best served by traditional HPC environments for which they have been carefully coupled.

“It would be false to claim that current production HPC platforms fail to meet the requirements of their application communities. It would be equally wrong to claim that the existing platform model is a pervasive problem that generally stalls the innovation and productivity of HPC applications…[There are] significant classes of applications, often from the monolithic, tightly-coupled parallel realm, [that] have few concerns regarding the issues out-lined in this paper…They are the original tenants and drivers of HPC and have an effective social and technical symbiosis with their platform environments.

“However, it is equally important to understand that other classes of applications (that we call second generation applications) and their respective user communities share a less rosy perspective. These second generation applications are typically non-monolithic, dynamic in terms of their runtime behavior and resource requirements, or based on higher-level tools and frameworks that manage compute, data and communication. Some of them actively explore new compute and data handling paradigms, and operate in a larger, federated context that spans multiple, distributed HPC clusters.”

To qualify and quantify their assumptions, the authors report they are in the process of designing a survey that will be sent out to platform providers and application groups to verify current issues on a broader and larger scale. They write, “The main focus of our work will be on the further evaluation of our prototype system. We are working on a ‘bare metal’ deployment on HPC cluster hardware at EPCC. This will allow us to carry out detailed measurements and benchmarks to analyze the overhead and scalability of our approach. We will also engage with computational science groups working on second generation applications to explore their real-life application in the context of cHPC.”

Link to paper (Rethinking HPC Platforms: Challenges, Opportunities and Recommendations): https://arxiv.org/pdf/1702.05513.pdf

Addendum (3/1/17):

The authors are well aware of the many ongoing efforts to leverage container technology for HPC. Lead author Weidner told HPCwire, “I am familiar with the work on Singularity that Gregory Kurtzer and his peers at LBNL are doing. It is a prominent project with quite significant real-world uptake and definitely needs to be, along with a few others, added to the related work section in the next iteration of our paper.

“We can definitely observe that over the past year, operating-system level virtualization and containers have become more and more common place in HPC application and middleware stacks, especially in projects that rely on, or support what we call “second gen.” applications. Take Cornell’s BioHPC Lab (https://cbsu.tc.cornell.edu/lab/lab.aspx) for example, or NERSC’s Shifter (http://www.nersc.gov/users/software/using-shifter-and-docker/using-shifter-at-nersc/). I think with Singularity leading the way, the objective of most of these projects is to address what we refer to as the “centralized (software) deployment monopolies” and “application mobility” in our paper.

The scope for cHPC tries to be a bit broader, says Weidner. “First of all, unlike Singularity, cHPC is not production-grade software. It is a research prototype. Having said that, the vision of cHPC and the conceptual work we are doing around it is not just to encapsulate (end-)user applications but to incorporate more low-level HPC system components. Our aim is to develop blueprints for more “data-driven” HPC environments in which application adaptivity, elastic scalability and resilience strategies are supported explicitly by the platform.

“We believe that a data-driven HPC software stack is one of the critical, but still missing components to address the upcoming exascale application challenges in which real-time predictive operational analytics will play an important role to support resilience and efficiency at extreme scales. Containers are an excellent vehicle to research these new data-data driven system and application architectures without having to implement an entire HPC system from scratch. That’s why we have developed cHPC.”

Weidner and his colleagues are working on a paper in which we lay out a comprehensive framework for operational data management in HPC systems (“Data-Driven HPC”).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This