Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

By Sean Thielen

February 24, 2017

Editor’s note: In this contributed feature, Sean Thielen details the innovative architectural concepts coming out of the DEEP and DEEP-ER projects, and follows the evolution of the Cluster-Booster architecture, a heterogeneous hardware design developed at the Jülich Supercomputing Centre.

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems.

In Europe, the DEEP project has successfully built a next-generation heterogeneous architecture based on an innovative “cluster-booster” approach. The new architecture can dynamically assign individual code parts in a simulation to different hardware components based on which component can deliver the highest computational efficiency. It also provides a foundation for a modular type of supercomputing where a variety of top-level system components, such as a memory module or a data analytics module for example, could be swapped in and out based on workload characteristics. Recently, Norbert Eicker, head of the Cluster Computing research group at Jülich Supercomputing Centre (JSC), explained how the DEEP and DEEP-ER projects are advancing the idea of “modular supercomputing” in pursuit of exascale performance.

Why go DEEP?

Eicker says that the use of vectorization or multi-core processors have become the two main strategies for acceleration. He noted that the main advantages in general purpose multi-core processors include high single-thread performance due to relatively high frequency along with their ability to do out-of-order processing. Their downsides include limited energy efficiency and a higher cost per FLOP. Accelerators, such as the Intel Xeon Phi coprocessor or GPUs, on the other hand are more energy efficient but harder to program.

Given the different characteristics of general purpose processors and accelerators, it was only a matter for time before researchers began looking for ways to integrate different types of compute modules into an overall HPC system. Eicker said that most efforts have involved building heterogeneous clusters wherein standard cluster nodes are connected using a fabric and then accelerators are attached to each cluster node.

Figure 1: An example of a basic architecture for a heterogeneous cluster.

Per Eicker, this heterogeneous approach has drawbacks, including the need for static assignment of accelerators to CPUs. Since some applications benefit greatly from accelerators and others not at all, getting the ratio of CPUs to accelerators right is tricky and inevitably leads to inefficiencies. Eicker explained that the idea behind the DEEP project was to combine compute resources into a common fabric and make the accelerating resources more autonomous. The goal was to not only enable dynamic assignments between cluster nodes and the accelerator, but also to enable the accelerators to run a kind of MPI so the system could offload more complex kernels to the accelerators rather than needing to always rely on the CPU.

The building blocks of a successful prototype

Work on the prototype Dynamical Exascale Entry Platform (DEEP) system began in 2011, and was mostly finalized toward the end of 2015. It took the combined efforts of 20 partners to complete the European Commission funded project. The 500 TFLOP/s DEEP prototype system includes a “cluster” component with general-purpose Intel Xeon processors and a “booster” component with Intel Xeon Phi coprocessors along with a software stack capable of dynamically separating code parts in a simulation based on concurrency levels and sending them to the appropriate hardware component. The University of Heidelberg developed the fabric, which has been commercialized by EXTOLL and dubbed the EXTOLL 3D Torus Network.

Figure 2: The DEEP cluster-booster hardware architecture. The cluster is based on an Aurora HPC system from Eurotech. The booster includes 384 Intel Xeon Phi processors interconnected by Extoll fabric.

Given the unusual architecture, the project team knew it would need to modify and test applications from a variety of HPC fields on the DEEP system to prove its viability. The team analyzed each selected application to determine which parts would run better on the cluster and which would run better on the booster, and modified the applications accordingly. One example is a climate application from Cyprus Institute. The standard climate model part of the application runs on the cluster side while an atmospheric chemical simulation runs on the booster side, with both sides interacting with each other from time to time to exchange data.

The new software architecture

One of the most important developments of the DEEP project is a software architecture that includes new communication protocols for transferring data between network technologies, programming model extensions and other important advancements.

Figure 3: The DEEP software architecture includes standard software stack components along with some new components developed specifically for the project.

While left- and right-hand sides of the architecture in figure 3 are identical to the standard MPI-based software-stacks of most present day HPC architectures, the components in the middle add some important new capabilities. Eicker explained that in the DEEP software architecture, the main part of applications and less scalable code are only run on the cluster nodes and everything starts on the cluster side. What’s different is that the cluster part of the application can collectively start a crowd of MPI-processes on the right-hand side using a global MPI.

The spawn for the booster is a collective operation of cluster processes that creates an inter-communicator containing all parents on one side and all children on the other. For example, the MPI_COMM_WORLD or a subset of processes on the cluster side, collectively called the MPI_Comm_spawn function, can create a new MPI_COMM WORLD on the booster side that is capable of standard MPI communication. Once started, the processes on the booster side can communicate amongst each other and exchange messages, making it possible to offload complex kernels to the booster.

Using MPI to bridge between the different fabrics in the cluster and booster may seem like it would significantly complicate the lives of application developers. However, Barcelona Supercomputing Center invented what is basically a source-to-source compiler, called the OmpSs Offload Abstraction compiler that does much of the work. Developers see a familiar looking cluster side with an Infiniband-based MPI and a booster side with an EXTOLL-based MPI. Their job is to annotate the code to tell the compiler which parts should run on the cluster versus the booster. The OmpSs compiler introduces the MPI_Comm_spawn call and the other required communication calls for sharing data between the two code parts.

Eicker explained that the flexible DEEP approach has many advantages, including options for multiple operational modes that enable much more efficient use of system resources. Beyond the specialized symmetric mode described above, the booster can be used discretely, or as a pool of accelerators. He used applications that could scale on the Blue Gene system as an example, noting they be run entirely on the booster side with no cluster interaction.

From DEEP to DEEP-ER

Plans for the DEEP-ER (Dynamical Exascale Entry Platform – Extended Reach) phase include updating the booster to include the latest generation of Intel Xeon Phi processors. The team is also exploring how on-node Non-Volatile Memory (NVM), network attached memory and a simplified interface can improve the overall system capabilities.

Figure 4: The DEEP-ER cluster-booster hardware architecture.

Eicker said that since Xeon Phi processors are self-booting, the upgrade will make the hardware implementation easier. The team also significantly simplified the interface by using the EXTOLL fabric throughout the entire system. The global use of the EXTOLL fabric enabled the team to eliminate the booster interface nodes and the DEEP cluster-booster protocol. The DEEP-ER system will use a standard EXTOLL protocol running the two types of nodes. The EXTOLL interconnect also enables the system to take advantage of the network attached memory.

One of the main objectives of the DEEP-ER project is to explore scalable I/O. To that end, the project team is investigating the integration of different storage types, starting from the disks using NVM while also making use of the network attached memory. Eicker said the team is using the BeeGFS file system and extensions that enable smart caching to local NVMe devices in the common namespace of the file system to help improve performance as well as SIONlib, a scalable I/O library developed by JSC for parallel access to task-local files, to enable more efficient local tasking of I/O. Exascale10 I/O software from Seagate also sits on top of the BeeGFS file system, enabling the MPI I/O to make use of the file system cache extensions.

Beyond I/O, the DEEP-ER project is also exploring how to improve resiliency. Eicker noted that because the offloaded parts of programs are stateless in the DEEP approach, it’s possible to improve the overall resiliency of the software and make functions like checkpoint restart a lot more efficient than standard approaches.

Toward modular supercomputing

Each phase of the DEEP project is an important step forward toward modular supercomputing. Eicker said that the DEEP cluster-booster concept showed that it’s possible to integrate heterogeneous systems in new ways. With DEEP-ER, the combination of the NAM and network attached storage add what is essentially a memory booster module. Moving forward, there are all kinds of possibilities for new modules, according to Eicker. He mentioned an analytics module that might look like a cluster, but include more memory or different types of processors, or a module that acts as a graphics cluster for online visualization.

Figure 5: The end goal of the DEEP project is to create a truly modular supercomputer, which could pave the way for increasingly specialized modules for solving different types of supercomputing challenges.

The ultimate goal of the DEEP project is to build a flexible modular supercomputer that allows users to organize applications for efficient use of the various system modules. Eicker said that the DEEP-ER team hopes to extend its JURECA cluster with the next-generation Xeon Phi processor-based booster. Then the team will begin exploring new possibilities for the system, which could include adding new modules, such as a graphics, storage and data analytics modules. The next steps could even include a collaboration with the Human Brain Project on neuromorphic computing. And these ideas are only the beginning. The DEEP approach could enable scientists to dream up new modules for tackling their specific challenges. Eicker acknowledges that there is much work to be done, but he believes the co-design approach used by the DEEP team will continue to drive significant steps forward.

Watch a short video capturing highlights of Eicker’s presentation.

About the Author

Sean Thielen, the founder and owner of Sprocket Copy, is a freelance writer from Portland, Oregon who specializes in high-tech subject matter.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This