Thomas Sterling on CREST and Academia’s Role in HPC Research

By Thomas Sterling, Indiana University

February 27, 2017


Editor’s note: Earlier this year, HPCwire asked Thomas Sterling, director of the Center for Research in Extreme Scale Technologies (CREST) at Indiana University, to consider writing an article about the CREST organization and its near- and long-term priorities. He responded with a broader (better) idea – to examine the importance of academia’s role in advancing HPC with CREST as the exemplar. In particular, said Sterling, academia’s role in basic HPC research is perhaps undervalued in today’s environment that’s so focused on applied R&D. In this brief, substantive essay, Sterling examines the role academia plays in advancing HPC, describes in some detail the CREST organizational structure in pursuit of that role, and briefly reviews its work (with others) on the ParalleX execution model as an example of impactful basic research. The range of CREST projects, of course, is wide. Here’s a link to a summary of CREST research.

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Often these have been intertwined with cross collaborations in all possible combinations and under the guidance of Federal agencies with mission critical goals. But each class of R&D environment has operated at its own pace and with differing goals, strengths, and timeframes, the superposition of which has met the short, medium, and long term needs of the nation and the field of HPC.

Different countries from the Americas, Europe, Asia, and Africa have evolved their own formulas of such combinations sometimes in cooperation with others. Many, but not all, emphasize the educational component of academic contributions for workforce development, incorporate the products of international industrial suppliers, and specialize their own government bodies to specific needs. In the US, academic involvement has provided critical long-term vision and perhaps most importantly greatly expanded the areas of pursuit.

Thomas Sterling, Director, CREST, Indiana University

The field of HPC is unique in that its success appears heavily weighted in terms of its impact on adoption by industry and community. This tight coupling sometimes works against certain classes of research, especially those that explore long term technologies, that investigate approaches outside the mainstream, or that require substantial infrastructure often beyond the capabilities or finances of academic partners. A more subtle but insidious factor is the all-important driver of legacy applications, often agency mission critical, that embody past practices constraining future possibilities.

How university research in HPC stays vibrant, advances the state of the art, and still makes useful contributions to the real world is a challenge that demands innovation in organization within schools and colleges. Perhaps most importantly, real research as opposed to important development not only involves but demands risk – it is the exploration of the unknown. Risk adverse strategies are important when goals and approaches are already determined and time to deployment is the determining factor of success. But when beyond a certain point, honesty recognizes that future methods are outside the scope of certainty, then the scientific method applies and when employed must not just tolerate by benefit from uncertainty of outcome.

Without such research into the unknown, the field is restricted to incremental perturbations of the conventional, essentially limiting the future to the cul de sac of the past. This is insufficient to drive the future means into areas beyond our sight. The power and richness of the mixed and counter balancing approaches of government labs, industry, and academia guarantee both the near-term quality of deployable hardware and software platforms and the long-term as yet understood improved concepts where the enabling technologies and their trends are distinct from the present.

This is the strength of the US HPC R&D approach and was reflected in the 2015 NSCI executive order for exascale computing. How academia conducts its component of this triad is a bit of a messy and diverse methodology sensitive to the nature of the institutions of which they are a part, the priorities of their universities, funding sources, and the vision of the individual faculty and senior administrators responsible for its direction, strategy, staffing, facilities, and accomplishments by which success will be measured. This article presents one such enterprise, the Center for Research for Extreme Scale Technologies (CREST) at Indiana University (IU) which incorporates one possible strategy balancing cost, impact, and risk on the national stage.

CREST is a medium scale research center, somewhere between small single-faculty led research groups found at many universities and those few premiere research environments such as the multiple large-scale academic laboratories at MIT and similar facilities like TACC and NCSA at UT-Austin and UIUC, respectively. While total staffing numbers are routinely in flux, a representative number is on the order of 50 people. It occupies a modern two-story building of about 20,000 square feet conveniently located within walking distance of the IU Bloomington campus and the center of the city.

CREST was established in the fall of 2011 by Prof. Andrew Lumsdaine as its founding Director, Dr. Craig Stewart as its Assistant Director, and Prof. Thomas Sterling as its Chief Scientist. Over almost six years of its existence, CREST has evolved with changes in responsibilities. Sterling currently serves as Director, Prof. Martin Swany as Associate Director, and Laura Pettit as Assistant Director. Overall staffing is deemed particularly important to ensure that all required operating functions are performed. This means significant engagement of administrative staff which is not typical of academic environments. But cost effectiveness to maximize productivity in research and education is a goal eliminating tasks that could be better performed, and at lower cost, by others. An important strategy of CREST is let everyone working as part of a team do what they are best at resulting in highest impact at lowest cost.

As per IU policy, research direction is faculty led with as many as six professors slotted for CREST augmented with another half dozen full-time research scientists including post-docs. A small number of hardware and software engineers both expedites and enhances quality of prototype development for experimentation and product delivery to collaborating institutions. CREST can support as many as three-dozen doctoral students with additional facilities for Masters and undergraduate students.

Organizationally, CREST has oversight by the Office of the Dean of the IU School of Informatics and Computing (SOIC) in cooperation with the Office of the VP of IT and the Office of the VP of Research. It coexists with the many departments making up SOIC and has the potential to include faculty and students from any and all of them. It also extends its contributions and collaborations to other departments within the university as research opportunities and interdisciplinary projects permit. While these details are appropriate, they are rather prosaic and more importantly do not describe either the mandate or the essence of CREST; that is about the research it enables.

CREST was established, not for the purposes of creating a research center, but as an enabler to conduct a focused area of research; specifically, to advance the state-of-the-art in high performance computing systems beyond conventional practices. This was neither arbitrary nor naive on the part of IU senior leadership and was viewed as the missing piece of an ambitious but realizable strategy to bring HPC leadership and capability to Indiana. Already in place was strong elements of cyber-infrastructure support and HPC data center facilities for research and education. More about this shortly. CREST was created as the third pillar of this HPC thrust by bringing original research to IU in hardware and software with a balanced portfolio of near and long term initiatives providing both initial computing environments of immediate value and extended exploration of alternative concepts unlikely to be undertaken by mainstream product oriented activities. Therefore, the CREST research strategy addresses real-world challenges in HPC including classes of applications not currently well satisfied through incremental changes to conventional practices.

One of the critical factors in the impact of CREST is its close affiliation with the Office of the Vice President for Information Technology (OVPIT), including the IU Pervasive Technology Institute (IUPTI), and University Information Technology Services (UITS). This dramatically reduces the costs and ancillary activities of CREST research by leveraging the major investments of OVPIT in support of broader facilities and services for the IU computing community permitting CREST as a work unit to be more precisely focused on its mission research while staying lean and mean. IU VP for IT and COI Brad Wheeler played an instrumental role in the creation of CREST and the recruitment of Thomas Sterling and Martin Swany to IU.

The IUPTI operates supercomputers with more than 1 PetaFLOPS aggregate processing capability, including the new Big Red II Plus, a Cray supercomputer allowing large scale testing and performance analysis of HPX+ software. This is housed and operated in a state-of-the-art 33,000 square feet data center that among its other attributes is tornado proof. IUPTI exists to aid the transformation of computer science innovation into tools usable by the practicing scientist within IU. IUPTI creates special provisions for support of CREST software on their systems and at the same time has provided two experimental compute systems (one cluster, one very small Cray test system) for dedicated use within CREST.

CREST founding director Andrew Lumsdaine (l) and current director Thomas Sterling in front of Big Red II Plus (Cray)

IUPTI staff are engaged and active in CREST activities. For example, IUPTI Executive Director Craig Stewart gave the keynote address at the 2016 SPPEXA (Special Priority Project on EXascale Applications) held in Munich, and discussed US Exascale initiatives in general and CREST technologies in particular. IUPTI coordinates their interactions with vendors with CREST so as to create opportunities for R&D partnerships and promulgation of CREST software. Last, and definitely not least, the UITS Learning Technologies Division CREST in distribution of online teaching materials created by CREST. All in all, CREST, SOIC, and OVPIT are partners in supporting basic research in HPC and rendering CS innovations to practical use for science and society while managing costs.

The CREST charter is one of focused research towards a common goal of advancing future generation of HPC system structures and applications; the Center is simply a vehicle for achieving IU’s goals in HPC and the associated research objectives, rather than is its actual existence the purpose itself. The research premise is that key factors determine ultimate delivered performance. These are: starvation, latency, overhead, waiting for contention resolution, availability including resilience, and the normalizing operation issue rate reflecting power (e.g., clock rate). Additional factors of performance portability and user productivity also contribute to overall effectiveness of any particular strategy of computation.

A core postulate of CREST HPC research and experimental development is the opportunity to address these challenge parameters through dynamic adaptive techniques through runtime resource management and task scheduling to achieve (if/when possible) dramatic improvements in computing efficiency and scalability. The specific foundational principles of the dynamic computational method used are established by the experimental ParalleX execution model which expands computational parallelism, addresses the challenge of uncertainty caused by asynchrony, permits exploitation of heterogeneity, and exhibits a global name space to the application.

ParalleX is intended to replace prior execution models such as Communicating Sequential Processes (CSP), SMP-based multiple threaded shared memory computing (e.g., OpenMP), vector and SIMD-array computing, and the original von Neumann derivatives. ParalleX has been formally specified through operational semantics by Prof. Jeremy Siek for verification of correctness, completeness, and compliance. As a first reduction to practice, a family of HPX runtime systems have been developed and deployed for experimentation and application. LSU has guided important extensions to C++ standards led by Dr. Hartmut Kaiser. HPX+ is being used to extend the earlier HPX-5 runtime developed by Dr. Luke D’Alessandro and others into areas of cyber-physical systems and other diverse application domains while supporting experiments in computer architecture.

One important area pursued by CREST in system design and operation is advanced lightweight messaging and control through the Photon communication protocol led by Prof. Martin Swany with additional work in low overhead NIC design. Many application areas have been explored. Some conventional problems exhibiting static regular data structures show little improvement through these methods. But many applications incorporating time-varying irregular data structures such as graphs found in adaptive mesh refinement, wavelet algorithms, N-body problems, particle in cell codes, and fast multiple methods among others demonstrate improvements, sometimes significant, in the multi-dimensional performance tradeoff space. These codes are developed by Drs. Matt Anderson, Bo Zhang, and others have driven this research while producing useful codes including the DASHMM library.

The CREST research benefits from both internal and external sponsorship. CREST has contributed to NSF, DOE, DARPA, and NSA projects over the last half dozen years and continues to participate in advanced research projects as appropriate. CREST represents an important experience base in advancing academic research in HPC systems for future scalable computing, employing co-design methodologies between applications and innovations in hardware and software system structures and continues to evolve. It provides a nurturing environment for mentoring of graduate students and post-docs in the context of advanced research even as the field itself continues to change under national demands and changing technology opportunities and challenges.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan and will begin operation in fiscal 2018 (starts in April). A Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This