Thomas Sterling on CREST and Academia’s Role in HPC Research

By Thomas Sterling, Indiana University

February 27, 2017


Editor’s note: Earlier this year, HPCwire asked Thomas Sterling, director of the Center for Research in Extreme Scale Technologies (CREST) at Indiana University, to consider writing an article about the CREST organization and its near- and long-term priorities. He responded with a broader (better) idea – to examine the importance of academia’s role in advancing HPC with CREST as the exemplar. In particular, said Sterling, academia’s role in basic HPC research is perhaps undervalued in today’s environment that’s so focused on applied R&D. In this brief, substantive essay, Sterling examines the role academia plays in advancing HPC, describes in some detail the CREST organizational structure in pursuit of that role, and briefly reviews its work (with others) on the ParalleX execution model as an example of impactful basic research. The range of CREST projects, of course, is wide. Here’s a link to a summary of CREST research.

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Often these have been intertwined with cross collaborations in all possible combinations and under the guidance of Federal agencies with mission critical goals. But each class of R&D environment has operated at its own pace and with differing goals, strengths, and timeframes, the superposition of which has met the short, medium, and long term needs of the nation and the field of HPC.

Different countries from the Americas, Europe, Asia, and Africa have evolved their own formulas of such combinations sometimes in cooperation with others. Many, but not all, emphasize the educational component of academic contributions for workforce development, incorporate the products of international industrial suppliers, and specialize their own government bodies to specific needs. In the US, academic involvement has provided critical long-term vision and perhaps most importantly greatly expanded the areas of pursuit.

Thomas Sterling, Director, CREST, Indiana University

The field of HPC is unique in that its success appears heavily weighted in terms of its impact on adoption by industry and community. This tight coupling sometimes works against certain classes of research, especially those that explore long term technologies, that investigate approaches outside the mainstream, or that require substantial infrastructure often beyond the capabilities or finances of academic partners. A more subtle but insidious factor is the all-important driver of legacy applications, often agency mission critical, that embody past practices constraining future possibilities.

How university research in HPC stays vibrant, advances the state of the art, and still makes useful contributions to the real world is a challenge that demands innovation in organization within schools and colleges. Perhaps most importantly, real research as opposed to important development not only involves but demands risk – it is the exploration of the unknown. Risk adverse strategies are important when goals and approaches are already determined and time to deployment is the determining factor of success. But when beyond a certain point, honesty recognizes that future methods are outside the scope of certainty, then the scientific method applies and when employed must not just tolerate by benefit from uncertainty of outcome.

Without such research into the unknown, the field is restricted to incremental perturbations of the conventional, essentially limiting the future to the cul de sac of the past. This is insufficient to drive the future means into areas beyond our sight. The power and richness of the mixed and counter balancing approaches of government labs, industry, and academia guarantee both the near-term quality of deployable hardware and software platforms and the long-term as yet understood improved concepts where the enabling technologies and their trends are distinct from the present.

This is the strength of the US HPC R&D approach and was reflected in the 2015 NSCI executive order for exascale computing. How academia conducts its component of this triad is a bit of a messy and diverse methodology sensitive to the nature of the institutions of which they are a part, the priorities of their universities, funding sources, and the vision of the individual faculty and senior administrators responsible for its direction, strategy, staffing, facilities, and accomplishments by which success will be measured. This article presents one such enterprise, the Center for Research for Extreme Scale Technologies (CREST) at Indiana University (IU) which incorporates one possible strategy balancing cost, impact, and risk on the national stage.

CREST is a medium scale research center, somewhere between small single-faculty led research groups found at many universities and those few premiere research environments such as the multiple large-scale academic laboratories at MIT and similar facilities like TACC and NCSA at UT-Austin and UIUC, respectively. While total staffing numbers are routinely in flux, a representative number is on the order of 50 people. It occupies a modern two-story building of about 20,000 square feet conveniently located within walking distance of the IU Bloomington campus and the center of the city.

CREST was established in the fall of 2011 by Prof. Andrew Lumsdaine as its founding Director, Dr. Craig Stewart as its Assistant Director, and Prof. Thomas Sterling as its Chief Scientist. Over almost six years of its existence, CREST has evolved with changes in responsibilities. Sterling currently serves as Director, Prof. Martin Swany as Associate Director, and Laura Pettit as Assistant Director. Overall staffing is deemed particularly important to ensure that all required operating functions are performed. This means significant engagement of administrative staff which is not typical of academic environments. But cost effectiveness to maximize productivity in research and education is a goal eliminating tasks that could be better performed, and at lower cost, by others. An important strategy of CREST is let everyone working as part of a team do what they are best at resulting in highest impact at lowest cost.

As per IU policy, research direction is faculty led with as many as six professors slotted for CREST augmented with another half dozen full-time research scientists including post-docs. A small number of hardware and software engineers both expedites and enhances quality of prototype development for experimentation and product delivery to collaborating institutions. CREST can support as many as three-dozen doctoral students with additional facilities for Masters and undergraduate students.

Organizationally, CREST has oversight by the Office of the Dean of the IU School of Informatics and Computing (SOIC) in cooperation with the Office of the VP of IT and the Office of the VP of Research. It coexists with the many departments making up SOIC and has the potential to include faculty and students from any and all of them. It also extends its contributions and collaborations to other departments within the university as research opportunities and interdisciplinary projects permit. While these details are appropriate, they are rather prosaic and more importantly do not describe either the mandate or the essence of CREST; that is about the research it enables.

CREST was established, not for the purposes of creating a research center, but as an enabler to conduct a focused area of research; specifically, to advance the state-of-the-art in high performance computing systems beyond conventional practices. This was neither arbitrary nor naive on the part of IU senior leadership and was viewed as the missing piece of an ambitious but realizable strategy to bring HPC leadership and capability to Indiana. Already in place was strong elements of cyber-infrastructure support and HPC data center facilities for research and education. More about this shortly. CREST was created as the third pillar of this HPC thrust by bringing original research to IU in hardware and software with a balanced portfolio of near and long term initiatives providing both initial computing environments of immediate value and extended exploration of alternative concepts unlikely to be undertaken by mainstream product oriented activities. Therefore, the CREST research strategy addresses real-world challenges in HPC including classes of applications not currently well satisfied through incremental changes to conventional practices.

One of the critical factors in the impact of CREST is its close affiliation with the Office of the Vice President for Information Technology (OVPIT), including the IU Pervasive Technology Institute (IUPTI), and University Information Technology Services (UITS). This dramatically reduces the costs and ancillary activities of CREST research by leveraging the major investments of OVPIT in support of broader facilities and services for the IU computing community permitting CREST as a work unit to be more precisely focused on its mission research while staying lean and mean. IU VP for IT and COI Brad Wheeler played an instrumental role in the creation of CREST and the recruitment of Thomas Sterling and Martin Swany to IU.

The IUPTI operates supercomputers with more than 1 PetaFLOPS aggregate processing capability, including the new Big Red II Plus, a Cray supercomputer allowing large scale testing and performance analysis of HPX+ software. This is housed and operated in a state-of-the-art 33,000 square feet data center that among its other attributes is tornado proof. IUPTI exists to aid the transformation of computer science innovation into tools usable by the practicing scientist within IU. IUPTI creates special provisions for support of CREST software on their systems and at the same time has provided two experimental compute systems (one cluster, one very small Cray test system) for dedicated use within CREST.

CREST founding director Andrew Lumsdaine (l) and current director Thomas Sterling in front of Big Red II Plus (Cray)

IUPTI staff are engaged and active in CREST activities. For example, IUPTI Executive Director Craig Stewart gave the keynote address at the 2016 SPPEXA (Special Priority Project on EXascale Applications) held in Munich, and discussed US Exascale initiatives in general and CREST technologies in particular. IUPTI coordinates their interactions with vendors with CREST so as to create opportunities for R&D partnerships and promulgation of CREST software. Last, and definitely not least, the UITS Learning Technologies Division CREST in distribution of online teaching materials created by CREST. All in all, CREST, SOIC, and OVPIT are partners in supporting basic research in HPC and rendering CS innovations to practical use for science and society while managing costs.

The CREST charter is one of focused research towards a common goal of advancing future generation of HPC system structures and applications; the Center is simply a vehicle for achieving IU’s goals in HPC and the associated research objectives, rather than is its actual existence the purpose itself. The research premise is that key factors determine ultimate delivered performance. These are: starvation, latency, overhead, waiting for contention resolution, availability including resilience, and the normalizing operation issue rate reflecting power (e.g., clock rate). Additional factors of performance portability and user productivity also contribute to overall effectiveness of any particular strategy of computation.

A core postulate of CREST HPC research and experimental development is the opportunity to address these challenge parameters through dynamic adaptive techniques through runtime resource management and task scheduling to achieve (if/when possible) dramatic improvements in computing efficiency and scalability. The specific foundational principles of the dynamic computational method used are established by the experimental ParalleX execution model which expands computational parallelism, addresses the challenge of uncertainty caused by asynchrony, permits exploitation of heterogeneity, and exhibits a global name space to the application.

ParalleX is intended to replace prior execution models such as Communicating Sequential Processes (CSP), SMP-based multiple threaded shared memory computing (e.g., OpenMP), vector and SIMD-array computing, and the original von Neumann derivatives. ParalleX has been formally specified through operational semantics by Prof. Jeremy Siek for verification of correctness, completeness, and compliance. As a first reduction to practice, a family of HPX runtime systems have been developed and deployed for experimentation and application. LSU has guided important extensions to C++ standards led by Dr. Hartmut Kaiser. HPX+ is being used to extend the earlier HPX-5 runtime developed by Dr. Luke D’Alessandro and others into areas of cyber-physical systems and other diverse application domains while supporting experiments in computer architecture.

One important area pursued by CREST in system design and operation is advanced lightweight messaging and control through the Photon communication protocol led by Prof. Martin Swany with additional work in low overhead NIC design. Many application areas have been explored. Some conventional problems exhibiting static regular data structures show little improvement through these methods. But many applications incorporating time-varying irregular data structures such as graphs found in adaptive mesh refinement, wavelet algorithms, N-body problems, particle in cell codes, and fast multiple methods among others demonstrate improvements, sometimes significant, in the multi-dimensional performance tradeoff space. These codes are developed by Drs. Matt Anderson, Bo Zhang, and others have driven this research while producing useful codes including the DASHMM library.

The CREST research benefits from both internal and external sponsorship. CREST has contributed to NSF, DOE, DARPA, and NSA projects over the last half dozen years and continues to participate in advanced research projects as appropriate. CREST represents an important experience base in advancing academic research in HPC systems for future scalable computing, employing co-design methodologies between applications and innovations in hardware and software system structures and continues to evolve. It provides a nurturing environment for mentoring of graduate students and post-docs in the context of advanced research even as the field itself continues to change under national demands and changing technology opportunities and challenges.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This