Dr. Eng Lim Goh Hails New Frontier of Scalable Learning

By Tiffany Trader

March 2, 2017

Dr. Eng Lim Goh is one of the leading HPC visionaries of our time. He’s been the driving force behind SGI’s technical computing program for nearly two decades, and since the HPE-SGI joining last November, Goh’s role goes forward as vice president and SGI chief technology officer at HPE.

HPC’s ability to drive innovation and benefit humanity is always top of mind to Goh and he is an enthusiastic proponent of AI and deep learning, fast-moving fields that are being propelled by the confluence and availability of big compute and big data.

Goh was one of the lead designers on the recently-announced Tsubame AI supercomputer, which is now shipping to the Tokyo Institute of Technology (TiTech). With 47 petaflops of 16-bit AI horsepower, Tsubame3.0 will be one of the largest AI supercomputers in the world when it comes online this summer, and will be the largest in Japan. The system is organized around the concept of what Goh and HPE are calling scalable learning, not just for production deep learning as we know it but to set the stage for near-real time training, so models can learn on the fly.

In this interview with HPCwire, Dr. Goh reviews the current state of AI supercomputing, outlines his vision for where the field is headed and provides insight into the converged SGI-HPE roadmap.

HPCwire: AI is not a new field, but computational power and the availability of data have enabled this renaissance for machine learning and deep learning — how do you view the relationship between HPC and AI?

Dr. Eng Lim Goh: HPC traditionally has been one where you run simulations. You take in small amounts of data, you run your formulas, equations, and you process these data and then you produce massive amounts of data. That has always been the typical approach. Then over the years, this produced data is starting to become a load on the analytics side, to get the insights from these data. I’ve heard of customers who are saying they’ve only managed to analyze 10 percent of the data produced because things were getting a bit behind on the analysis side. They have been smart about selecting what 10 percent to analyze and they have been producing good results anyway, but more and more you’re realizing that the analysis side is becoming an issue not only just in HPC, but also for the instrument side, the Square Kilometre Array, Large Hadron Collider and so on.

So instruments and HPC are generating a large amount of data increasing the load on the analysis side. With an analysis engine, you’re taking all that data in to try to produce some insight at the other end. Lots of data goes in, distilled insight comes out. A haystack goes in and a needle comes out – that is essentially what that analysis is like. The world therefore has started to invest more and more on the analysis side.

I view this analysis as intensive human-in-the-loop analysis, where an analyst sits there, picks the data, runs some algorithm, produces the next step in that data, then the analyst again – the human-in-the-loop – runs other sets of algorithms to produce an output, going through this loop that ultimately produces insight.

At some point as data keeps growing, this intensive human-in-the-loop needs to have a better way, and I believe that is one of the reasons that AI has reemerged, because of the intensity of the human-in-loop and the questions from analysts to see if there’s a way to reduce this intensity. The motivation gives rise to machine learning where you can automate a bit more of the analysis and thus reduce the intensity of the human-in-the-loop in the analysis process.

So one approach therefore to reduce the intensity of the human-in-the-loop is through machine learning and this is how they do it. They take all the massive amounts of data and put it through a learning algorithm and then the learning algorithm ultimately achieves some decision-making capability and the next set of data that comes along, this machine learning algorithm is then applied to it – and now you can see the level of human intervention, the intensity of that human-in-loop, is reduced now because of the increased automation.

The other reason for the reemergence is there’s now enough data more easily available to do machine learning because machine learning requires massive amounts of data. If you go back 30 years the internet wasn’t there, the ability to have this availability of data was much less and the amount of data wasn’t as big. So this is the second reason – the massive amounts of data more readily available gave rise to the resurgence in machine learning.

And then you hear all these terms, machine learning, deep learning, AI, neural network. And the relationship among them I keep emphasizing among our teams and to customers and in my talks is as follows.

A machine learns to be artificially intelligent; that’s the relationship between the two, machine learning and AI. And a method of machine learning is called neural network and a multi-tier or multi-stage neural network is called deep learning.

And that’s how the four terms are related, and it turns out the more popular way today to achieve machine learning is through deep learning and deep learning is really a multi-stage neural network which is a method of machine learning and through machine learning you get artificial intelligence.

HPCwire: How do supervised and unsupervised learning intersect here?

Goh: Supervised, unsupervised and reinforcement learning are the three things. To simplify it, there are two things you have to do in supervised learning, there is a teacher and the teacher does two things. Label the inputs, so there’s a picture of cat, there’s a picture of cat, there’s not a picture of cat.

The second thing the teacher does is to run the supervision, to be the supervisor as the machine makes these wild guesses as to whether it got it right or wrong; this is called supervised learning. With reinforcement learning, you take two instances of the machine learning algorithm and get them to play each other. In the reinforcement learning the teacher has taken a step back and has less involvement.

This year in January, for the first time, the Carnegie Mellon University poker bot running on an HPE supercomputer beat four of the world’s top poker players in a game of Texas Heads-Up No-Limit poker [see our coverage here]. Last year it tried and lost, only beating one poker player out of four; this year it beat all four. Beat in a way that the sum total of all winnings was $1.7 million, while last year the machine lost $700,000.

With poker, unlike chess, you don’t know your opponent’s position; it is incomplete information and therefore the AI/ML algorithm needs to actually make guesses as to what your opponent has, and it turns out that this is actually important in real life to do AI. When you are negotiating, or when you are doing an auction, you don’t quite know what your opponents are thinking and this poker AI program that CMU has developed is not specifically just for poker; in real life it can be used as a negotiator or as a bidder in an auction.

After the CMU poker match, a player asked one of the developers, “Why did the algorithm, the poker bot, apply the bluff in this way?” The developer said they didn’t know the answer. This is the implication of what it means to have supervised and reinforcement learning. The algorithm is smart enough to make the right decision most of the time, but we are starting to not quite know why it is making those decisions.

Unsupervised learning is more, in my opinion, the frontier, where you’re saying as the teacher, I’m not going to do much, I’m not going to supervise, I’m just going to give the AI algorithm massive amounts of data that is unlabeled.

HPCwire: Let’s talk about the importance of scaling these models.

Goh: Learning takes a long time. If you’ve heard of Google’s cat experiment, they were taking in millions of pictures of cats and it took days, weeks or sometimes months depending on how big the machine is to complete that learning process before you can even start making decisions using that learned machine. You don’t have equations like in the HPC case. You essentially have an adder, you’re taking all this data and making guesses, you guess until you got it right and at the end of it, you produce a matrix of weights. In Google’s case, they call those weights tensors and that’s why they are building tensor processors.

The inference part of machine learning is based on the generation of weights or tensors at the end of that learned process. So you’re putting massive amounts of data to the machine learning algorithm and what the machine algorithm ultimately gets is a set or matrix of weights. This type of input gets more weight and this one gets less weight. The question is if you want to learn fast before you can start inferring using your weights, that is to produce your weights fast. Here you can see the funnel: massive data goes in and you produce little data out and that little data is essentially a matrix of weights.

The thing is, you want to learn fast. If you don’t want to take weeks or months to do learning because of the massive amount of data you have to ingest to make guesses on, what do you do? What you do is you scale your machine – this is where we come in right? You have to scale the machine because you can’t scale humans.

A “Co-Design” photo of the newly designed Tsubame3 blade, with TiTech Professor Satoshi Matsuoka and SGI CTO Dr. Goh. Source.

We can’t put two human minds together and hopefully reduce 20 years of education to 10 years, but machines we can scale. We can build a bigger machine to ingest more data and that’s exactly what TiTech does and that’s exactly what ABCI [short for AI Bridging Cloud Infrastructure, see our coverage here], which is the follow-on machine [to Tsubame3.0], will do even more. AIST, the new institute related to TiTech through Professor Satoshi Matsuoka, managing director of AIST, is looking at the next-generation cloud-based machine for artificial intelligence. He has this passion to build the world’s biggest AI machine. And TiTech is one part of it – the first step to scale machine learning – to take that learning process that would typically take months down to weeks, but you want to bring it down to days and even lower.

HPCwire: Can you tie this vision for scalable learning into the hardware and software challenges and what innovations are taking place there?

Goh: This was where we worked to fully understand Professor Matsuoka’s requirements. He’s the visionary and he thinks in a very scalable big way of what’s the next step for machine learning and if I were to simplify the idea it is to learn really fast through scaling, but scaling isn’t just buying more computers, just like with HPC.

High-performance computing isn’t just buying a million laptops and put them on the internet and create a virtual machine; it involves picking the right processor, picking the right interconnect and using the connection in the right way that suits the specific application and then the software layers that are on top of it. So this is the full set of requirements to achieve HPC and it is the same way with scalable machine learning; we have to pick the right processor, step one.

And in terms of the right one, in deep learning specifically, they don’t need that much precision but they need lots of FLOPS – so we look for a processor that could trade off precision for more FLOPS and it turns out the Nvidia P100 that we selected does exactly that in an almost linear fashion – meaning in HPC when you do double-precision, you get X number of FLOPS, when you drop down to single precision, you get 2X number of FLOPS, and when you drop down to half precision, you get almost 4X number of FLOPS. So this processor we’ve picked does the tradeoff in the right way that suits TiTech and that is fully trading off the precision for FLOPS.

Secondly, we need to pick the right interconnect that has high-bandwidth but not just high-bandwidth but as much bandwidth as [unintelligible]. Each node has four P100s from Nvidia and two Xeon processors from Intel. This two plus four combination in one node doesn’t just have one interconnect, we gave it all four. This is a very huge ingesting engine here and injection bandwidth engine here for each node, and then there are 540 of these in the TiTech machine, each node having four Nvidia P100s, two Xeons with not just one, not just two, but four high-bandwidth interconnects coming out of it.

The reason for this huge bandwidth is if you think of a funnel you are ingesting massive amounts of data on one side to crunch and learn from it – even if you have an engine that can learn really fast, you still need the ability to ingest all that data so you can consume it. So that was yet another innovation. I don’t remember [previously] building nodes that have up to four of these ingesting connects into each node. We’ve done many single interconnect, we’ve done fewer dual interconnect. I believe at least for me, this is the first time we’ve built a machine with four interconnects per node.

The other thing is how the interconnects are wired together in a topology. In this case we built a rich fat-tree that costs quite some portion of the money of the whole machine. As much as we dedicate the cost to the processors, we dedicated a significant portion of it to the way we connect so many interconnects coming off of each node in a rich fat tree, and then of course there is a software stack.

We listened very carefully to Professor Matsuoka to achieve his vision and we built to it and now we are pleased that many are making inquiries now for this same class of machine for their own projects.

HPCwire: Are the frameworks keeping up with the scalability on the hardware side?

Goh: The software framework in HPC has always tried to catch up with the industry that invests in scaling the hardware. In the early days, MPI, for example, to scale HPC applications did not scale as fast as we can scale the machines and also partly because the machine didn’t have the interconnect that was fast enough and low latency enough. So the answer is that the frameworks need to scale and some frameworks are scaling better than others, but essentially I think all will have to look at scaling just like the HPC world. HPC has different applications, some of them scale better. Even after so many years, decades, you get most of the applications scaling well, but you still have some applications that can’t scale to 10,000 or 100,000 cores for example. And it will be the same with the frameworks; some will scale better and others will have their niche.

We are watching the frameworks to make sure that we don’t go in a direction that frameworks cannot adapt to or scale to so it’s not just us running well ahead scaling the hardware. We have to look at frameworks too because the industry relies on a framework, especially the open source ones.

HPCwire: Did you see Baidu brought in ring all-reduce into their SVAIL deep learning framework and open sourced it as libraries?

Goh: Very interesting developments. There will be so many of these coming out, people taking AI algorithms into HPC applications too. But if you think about it, an all-reduce, which can be a common function you apply to HPC applications, each core is computing its own part of the entire problem, but ultimately you have to collect all the elements and reduce it to a big number. If you have ten cores, that’s fine, and then you have one hundred cores, one thousand cores, one million cores, going to ten million cores in an exascale machine, then all-reduce becomes a big data problem, and you’re trying to figure out ways to be smarter about it. We’ve been looking at building hardware just to do reduction and now that you built the hardware to do reduction, can the hardware be smarter about the reduction.

In the earlier days “smart” means you encode a fixed way of reducing that is the best you know, but can you be even smarter about it by being flexible about how you reduce, by looking at the pattern of the task reduction, and being smarter about the next reduction — and that’s starting to become a machine that starts to learn.

HPCwire: Switching gears a bit, it’s been about six months since the acquisition was announced and about three months since it was finalized, what can you tell us about the merged roadmap?

Goh: On the SGI side that is now part of HPE, clearly the ICE XA continues. The ICE XA can have different nodes in it and the one sold to TiTech is an AI node, a scalable learning AI node comprised of the four Nvidia P100s and two Xeons with the four interconnects and the option for Omni-Path and EDR, so this line continues: high-bandwidth, scale-out systems. The machine we shipped to TiTech, you can see from the photo that was released, it has the ICE-XA with the HPE green rectangle logo on it. This is public.

On the scale-up side, the UV architecture continues and currently it will be part of the Superdome program. The HPE Apollo line of systems includes both scale-up and scale-out solutions and the ICE-XA would be the part that comes in from the SGI side.

HPCwire: Final question – regarding supercomputing in Japan and the other big players there, Fujitsu and NEC, what are the strengths for HPE/SGI in relation to the competition?

Goh: I think with the Japanese vendors, the strengths are on the HPE side in this field and we’ve already got success stories with regards to building scalable learning engines and we want to keep that edge by bringing what we’ve learned from the HPC side of how to build scalable simulation engines to the AI side to building scalable learning engines. As HPE has acquired SGI, on the SGI side we have decades of experience building scalable systems and we believe that’s going to be a huge differentiator.

The second differentiator is our close relationship with customers all these years, and the application providers — from the ISVs to customers building their own codes. We’ve spanned decades, not just building scalable HPC systems on our own, but we’ve built them in conjunction with these software and applications that are developing also.

When we realized way back that reductions are a key factor, almost decades back, we were already starting to build algorithms for this reduction and hardware reductions. We’re going to take all that experience and bring that to the scalable learning world. We built the first in HPC machine in 1996, so two decades of scalable simulation engines. We’re going to bring that differentiator and knowledge forward to scalable learning engines — that’s the first thing. And the second thing is, as we’ve been doing that, we’ve done that in close relationship with how the software frameworks have evolved.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatment and vaccine development. Now, Lawrence Livermore National Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium-Range Weather Forecasts and the U.S. National Oceanic and At Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be nearer to becoming a practical reality. In this second inst Read more…

By John Russell

SiFive Accelerates Chip Design with Cloud Tools

March 25, 2020

Chip designers are drawing on new cloud resources along with conventional electronic design automation (EDA) tools to accelerate IC templates from tape-out to custom silicon. Among the challengers to chip design leade Read more…

By George Leopold

What’s New in Computing vs. COVID-19: White House Initiative, Frontera, RIKEN & More

March 25, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its scope and operation in a briefing led by Undersecretary of Ener Read more…

By John Russell

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel’s Neuromorphic Chip Scales Up (and It Smells)

March 18, 2020

Neuromorphic chips attempt to directly mimic the behavior of the human brain. Intel, which introduced its Loihi neuromorphic chip in 2017, has just announced that Loihi has been scaled up into a system that simulates over 100 million neurons. Furthermore, it announced that the chip smells. Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This